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ABSTRACT
Verifying the integrity of outsourced data is a classic, well-studied
problem. However current techniques have fundamental perfor-
mance and concurrency limitations for update-heavy workloads. In
this paper, we investigate the potential advantages of deferred and
batched verification rather than the per-operation verification used in
prior work. We present Concerto, a comprehensive key-value store
designed around this idea. Using Concerto, we argue that deferred
verification preserves the utility of online verification and improves
concurrency resulting in orders-of-magnitude performance improve-
ment. On standard benchmarks, the performance of Concerto is
within a factor of two when compared to state-of-the-art key-value
stores without integrity.

1. INTRODUCTION
Storing data in the cloud involves crossing organizational trust

boundaries. The data owner (clients) might not trust the cloud
provider to handle its data correctly—a rogue administrator or a
hacker could tamper with critical client data. Similarly, the cloud
provider might be concerned about spurious claims of data cor-
ruption by the client. This lack of trust motivates the problem of
designing verification mechanisms for data integrity. The goal is to
design a protocol for data updates and retrieval that enables clients
to verify (and the cloud provider to prove) that operations were
implemented correctly over valid data.

There is a rich body of work on data integrity verification [8,
13, 22, 28, 30, 31, 36]. Most of this work relies on cryptographic
hashing [16] and Merkle trees [25]. The main idea in this work is to
store a hash of the outsourced data at a trusted location. Whenever
the outsourced data is accessed, its integrity is verified by computing
a new hash and comparing it with the hash stored at the trusted loca-
tion; if the hash function is collision resistant, it is computationally
difficult for an attacker to alter the data without changing its hash.
Merkle trees enable locally verifiable and incrementally updatable
hashing, meaning that only part of the data is required to verify
integrity or update hashes. This property is achieved by a recursive
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application of a standard cryptographic hash function as we discuss
in Section 3.

However, the Merkle-tree approach has fundamental limitations
when faced with concurrent, update-heavy workloads. This is be-
cause every operation reads, and every update operation updates,
the root of the Merkle tree. This introduces read-write and write-
write conflicts at the root, which limits concurrency and reduces
performance. Furthermore, the verification step is computationally
intensive, requiring a logarithmic number of hash computations for
each operation, making it a potential bottleneck. Since this step
needs to access and possibly update the root hash value stored in the
trusted location (another read-write conflict), it is not amenable to
easy parallelization.

These limitations are magnified by modern hardware, which of-
fers rich parallelism capabilities. State-of-the-art data stores [21, 38]
leverage these capabilities to achieve millions of update-heavy oper-
ations per second on a single server node. On the other hand, using
existing techniques for data integrity, our experiments and results
from recent papers [13] indicate performance on the order of thou-
sands of operations per second—a severe three orders-of-magnitude
penalty to implement integrity.

In this paper we observe that the use of Merkle trees is closely tied
to online verification, the verification model used in most prior work.
In this model, verification occurs on an operation-by-operation basis.
That is, when an operation is evaluated, the integrity of any data
touched by that operation is immediately verified. There is evidence
that some of the limitations of Merkle trees are fundamental to online
verification. For example, Dwork et al. [9] show that any online
verification technique requires logarithmic verification overhead,
assuming bounded trusted state.

Motivated by this fact, in this paper we investigate an alternate
verification model, moving away from operation-by-operation ver-
ification and exploring the benefits of batching verification across
multiple operations. We present a comprehensive key-value store,
Concerto, designed from the ground up around batched verification.
Although batching changes the verification model somewhat since
verification is now deferred to a later time to enable batching, we
argue that the primary value of verification remains undiminished
by deferring. At the same time, we are able to nearly close the three
orders-of-magnitude performance gap. The performance of Con-
certo, including the cost of deferred verification, is within a factor of
two of state-of-the-art key value stores without integrity. Although
Concerto only supports simple key-value functionality currently, we
believe it provides the building blocks for a more general integrity
platform, which is an active research effort.
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1.1 Deferred Verification
In deferred verification, integrity verification is decoupled from

client data operations. If data is tampered with, this alteration is
not detected immediately when it is accessed, but in a separate
batched verification step that detects integrity violations of all data
accessed since the last verification step. We emphasize that integrity
violations never go undetected, but the discovery is merely delayed.

The delayed detection of integrity violation has two implica-
tions: First, deferred verification is not suitable for applications
(e.g., ATMs dispensing cash) that involve operations that cannot be
undone and cannot tolerate a verification delay. Second, deferred
verification could lead to wasted work. Data operations that hap-
pened after an integrity violation but before it was detected need to
be undone and possibly redone. However, as we argue in Section C,
online verification does not necessarily preclude wasted work or
make recovery from integrity violations any simpler.

Online verification is analogous to pessimistic concurrency con-
trol and detects integrity violations (conflicts) in data before perform-
ing operations over it. Deferred verification is similar to optimistic
concurrency control and detects integrity violations (conflicts) at a
later point in time. Optimistic concurrency control is not suitable
for some applications and subject to wasted work due to aborts.
Nevertheless, optimistic concurrency control mechanisms such as
snapshot isolation have become the de-facto standard in the database
industry. For data integrity, a deferred (optimistic) approach is even
more attractive as integrity violations are rarer than conflicts (justify-
ing optimism) and the cost of wasted work is much lower because the
execution of operations can be made orders-of-magnitude cheaper
than with online verification as we show in this paper.

Integrity verification plays the role of deterrence for malicious
activity. The value of deterrence does not diminish if the detection
is deferred. The data owner still obtains a formal proof of any
incorrect operation by a cloud service, and the cloud provider still
obtains a formal proof for correct operation. Besides, in terms of
real-world utility we also empirically establish in Section 7 that
the delay necessary to realize the performance benefits is relatively
modest: on the order of seconds to less than a minute.

1.2 A Design Centered around Concurrency
Concerto’s design exploits the additional flexibility provided by

deferred verification to avoid concurrency bottlenecks like those in
Merkle tree-based approaches. A central component of our design
is reducing the problem of verifying key-value integrity to that of
verifying memory integrity. For memory integrity, the deferred veri-
fication formulation enables us to use the offline memory checking
algorithm proposed by Blum et al [5]. This algorithm is efficient
and incurs a constant time overhead per operation. We extend the
Blum approach by presenting techniques that enable parallelization
of verification while avoiding hotspots such as the root node of a
Merkle tree.

A second key component of our design is the separation of data
integrity from indexing. In previous approaches, the same structure
was used to find (or show the absence of) data and enable integrity.
In Concerto, indexing is purely a performance accelerator and is un-
related to the verification of integrity. This design allows us to reuse
state-of-the-art indexing techniques and inherit their concurrency
optimizations for modern hardware.

Lastly, like much recent work [2, 39], Concerto relies on a server-
based trusted platform for verification and to store trusted state
(Section 2). A trusted platform is a shielded execution environment
backed by secure hardware on an otherwise untrusted server. By
design, a server administrator or attacker cannot tamper with the
processing and state within the trusted platform. While we can

design integrity solutions without it, a server-based trusted platform
simplifies client-server protocols and improves integrity guarantees
and performance [23]. This paper focuses mainly on the main
memory setting where the overhead of integrity is the largest. A
detailed study of how our techniques apply to an external memory
setting is future work.

2. OVERVIEW AND ARCHITECTURE

2.1 Key-Value Store Functionality
Concerto provides the standard data model and functionality of

an ordered key-value store. Keys are drawn from an ordered domain
and values from an arbitrary domain. Concerto supports the standard
get(k), put(k, v), insert(k, v), and delete(k) operations. Keys
are unique within an instance and insert(k, v) fails if key k exists
in the database. With slight extensions, Concerto can support range
scans, multi-key stores (where keys are not unique), and unordered
keys (hash tables).

Concerto uses a client-server architecture as shown in Figure 1.
Any number of client processes connect and issue concurrent op-
erations to a Concerto server. The Concerto server serializes the
operations and responds with the results. The result of an opera-
tion consists of a success/failure status bit. A successful get(k)
operation also returns the value associated with key k.

2.2 Trusted Platforms
Concerto relies on a server-based trusted platform for its integrity

guarantees. The trusted platform enables isolated code execution and
provides shielded state. An adversary with administrative privileges
over the Concerto server cannot influence the execution or output of
the trusted code running within the platform, for a given input, or
tamper with its internal state. Trusted platforms can be implemented
using specialized hardware (FPGAs [10], secure co-processors [2])
installed on the server machine or a special mode of the processor
(e.g., Intel SGX enclaves [24]).

A trusted platform typically also provides an attestation mecha-
nism by which a remote client can verify the authenticity of the code
executing within the platform. Attestation prevents attacks where
the adversary installs malicious code within the trusted platform.
Upon successful execution, the attestation protocol also provides
the remote client with a public key to bootstrap secure communi-
cation with the trusted code. The details of attestation and secure
communication of a public key are specific to the platform, and we
refer the reader to these references [24, 39].

2.3 Integrity Guarantee
Concerto provides the guarantee that any incorrect key-value store

functionality is detected by a verification procedure. With concur-
rency, this guarantee means that after verification, the operations
satisfy sequential consistency [20]: the result of each completed
client operation is consistent with a sequential execution of all com-
pleted operations, and the operations from each client appear in
that sequence in the order they were issued by the client. Concerto
further ensures that only legitimate client operations are part of this
sequence, without repetition. This means that an adversary can-
not introduce spurious operations or replay legitimate ones. Our
sequential consistency based integrity guarantee implies result cor-
rectness, completeness, and freshness, properties that have been
used to formalize data integrity in prior work [22].

Our integrity guarantee relies only on the properties of the trusted
platform listed earlier, the correctness of the code executing within it
(trusted code), and the security of standard cryptographic primitives.
In particular, this guarantee holds even if the Concerto server is com-
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Figure 1: Concerto Architecture

promised by an adversary who seeks to disrupt the guarantee. The
adversary has full control over the Concerto server: the adversary
can change untrusted code and data outside the trusted platform,
alter client and trusted code communication, and reboot the trusted
platform.

Deferred Integrity Verification
When a client invokes a data operation, the Concerto server returns,
along with the result of the operation, an attestation from trusted
code running within the trusted platform. This attestation represents
a guarantee that if the result of the operation is incorrect, it would
be detected by a subsequent integrity verification step. Informally,
the trusted code maintains internal hashes to support this guarantee,
the details of which form the technical core of this paper.

To perform deferred verification, a client invokes the DefVerify()
method exposed for this purpose. This method returns a boolean
value: a true indicates that the trusted code has verified the integrity
of all previous operations and a false indicates that some previous
operation had an integrity violation. (We discuss recovery from
DefVerify() failures in Section C.) DefVerify() is a batched op-
eration and performs verification of all operations (for all client
processes) since the previous DefVerify() call. As noted in Sec-
tion 1, many of our performance advantages stem from being able to
leverage batched verification. Deferred verification is non-quiescent
meaning Concerto processes regular data operations while executing
DefVerify().

As the above interface suggests, actual integrity verification is
performed by the trusted code within the server, and the client
merely learns the result of the verification. Since the client-server
communication is over an insecure channel, we protect responses
using message authentication codes (MAC) originating from the
trusted code as described in Section 2.4.1.

Non-guarantees
Concerto does not protect against denial-of-service attacks. For
example, an adversary can drop all client operations. The adversary
can also induce non-recoverable failures by destroying the database
and the logs or the persistent state within the trusted platform. The
adversary could also affect the progress and serialization order of
operations by delaying the processing of selected operations. These
non-guarantees stem from the power of the adversary, not from any
design choices of Concerto; i.e. they exist in all systems that verify
integrity.

2.4 Architecture
Figure 1 shows the overall architecture of Concerto. Concerto

currently runs on a single server machine. The server consists of
an untrusted platform consisting of conventional hardware (e.g.
multiple CPU cores, large memory, and persistent SSDs or disk),
an OS stack, and a trusted platform with the security properties
discussed in Section 2.2. Our design is agnostic to the choice of
trusted platform: we assume it supports parallel execution, limited
volatile memory, and a few words of nonvolatile memory; all trusted
platforms that we know of provide these features. With sharding
and simple client side checks, single node Concerto can be used as a
building block to derive a multi-node key-value store with the same
integrity guarantees, but we do not discuss this setting in this paper.

Figure 1 shows the state maintained by Concerto across the trusted
and untrusted platforms. Concerto stores, in the untrusted sys-
tem, the key-value database, an index to efficiently access specific
records in the database, and a persistent log for recovery after a hard-
ware/software failure or an integrity violation. The trusted platform
contains a volatile memory used to store a small number of hashes
for integrity checking and a single persistent memory used to store
a counter for recovery (Section C).

The Concerto server runs a collection of worker threads in the
untrusted platform and a collection of verifier threads in the trusted
platform (we use the term thread to mean a parallel execution unit,
not necessarily an OS thread). Worker threads handle client op-
erations. For each operation, a worker thread traverses the index,
looks up or updates key value data, and logs changes. In addition,
it invokes a remote verification procedure, VerifyOp(), within the
trusted platform. A verifier thread handles the VerifyOp() call,
where it checks the authenticity of the operation. If the operation
is valid, the verifier thread updates internal hashes (to be used by a
subsequent deferred verification step) and generates an attestation
for the result. As noted earlier, this attestation serves as a guarantee
that the result will be verified by the next DefVerify() call. Workers
and verifiers similarly coordinate to implement DefVerify() calls.

In the rest of this paper, we use the term untrusted module (UM)
to refer to Concerto components in in the untrusted platform (e.g.
workers, key-value data) and trusted module (TM) to refer to those
in the trusted platform (e.g. verifiers, hashes).

2.4.1 Client Server protocol
Before submitting any operations, a client process establishes a

connection with the Concerto server. As part of the connection setup
process, the client verifies the authenticity of the verification code
within the trusted platform (Section 2.2), gets access to its public
key, and performs a key exchange to derive a symmetric session
key. The trusted platform also verifies the authenticity of the client
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Figure 2: Merkle (B-)Tree and concurrency bottlenecks. The hash of a node
is stored at the parent and the hash of the root at a trusted location.

process. We elide these details since they are orthogonal to data
integrity; e.g., they could rely on PKI [16].

The session key is used to protect communication integrity. That
is, when a client communicates an operation, all the parameters of
the operation (keys, values) are protected by a MAC generated using
the session key. The verifier thread handling this operation checks
the MAC, so an adversary cannot introduce spurious operations into
the system. As part of this, all operations carry an operation id
(oid) parameter, which is required to be globally unique (e.g. mono-
tonically increasing). The verifier thread checks the uniqueness
of the oid to prevent replay attacks. The result attestation for an
operation consists of a MAC, generated using the session key, that
combines its oid and the result. The MAC ensures that the result
as recorded by the verifier is not altered en-route to the client. We
note that the same protocol is used both for regular data operations
and for DefVerify() calls, so the boolean result of DefVerify() is
protected by a MAC as well.

3. BASELINE USING MERKLE TREES
In this section, we present an overview of a Merkle-tree based

solution for key-value data integrity. To simplify the comparison
between the two approaches, we assume a similar server-based
UM/TM architecture as for Concerto (Section 2). This Merkle-
tree solution is also our experimental baseline implementation in
Section 7. A server-based TM makes for a fairer comparison than
the client-side verification used in most prior work. We specifically
discuss a variant called MB-tree [22], but our arguments generalize
to other variants as well.

An MB-tree is like a regular B-tree index over key-value data, ex-
cept that in addition to every pointer in a non-leaf node we also store
a cryptographic hash (e.g., SHA-256) of the node that is pointed to.
For example, in Figure 2, node n1 stores a pointer to node n3 and
the hash h(n3). The hash of the root node is stored within the TM.
The MB-tree itself is stored in the untrusted system.

To process an operation involving a key k, the UM traverses the
MB-tree using k just like in a regular B-tree. It then sends the
root-to-leaf path to the TM. The TM checks, for every link in the
path, if the hash stored with the link is equal to the hash of the node
pointed to. If all hash checks pass, the collision resistance property
of the hash function and the shielded value of the root hash in the
TM imply the integrity of every node in the path. The TM then uses
the leaf node in the path to determine the result of the operation
(e.g., the return value of a get() or the success of an insert()) and
attests the result for the client. In this system, the root-to-leaf path
essentially serves as a “proof” to the TM, validating the result.

In Figure 2, for the operation get(5), the UM sends the TM the

highlighted path with nodes n0, n1, and n4. The TM checks if
the hash of node n0 matches with the root hash stored within the
TM; if it does, this check establishes the integrity of node n0 and
therefore also the integrity of the hash h(n1) stored within n0. The
hash h(n1) stored in n0 is then used to check the integrity of node
n1, and so on. Finally, the integrity of node n4 establishes that the
correct result for get(5) is the value v5.

For update operations, the TM recomputes the hashes along the
path to maintain the MB-tree hash invariants and returns the updated
nodes to the UM. For inserts and deletes, this might mean adding or
deleting new nodes, so the TM code needs to handle the complexity
of B-tree structure changes [14].

We note that authentication using a Merkle tree reveals informa-
tion about data beyond what is being authenticated. For example,
while verifying get(5), the verifier learns about the value 7 and the
existence of values lesser than 5 and larger than 7. While this is not
an issue for our problem, there exist applications such as document
publishing with access control restrictions where this is unaccept-
able. There exists an interesting line of work [18, 6, 17] that avoids
such leakage, as discussed further in Section D.

3.1 Limitations
Hierarchical hashing and concurrency: As noted in Section 1,
the hierarchical hash aggregation of Merkle trees is fundamentally
at odds with concurrency. This arrangement introduces a read-
write conflict at the root node between every update and any other
operation. For example, in Figure 2, get(5) needs to read the
entire root node n0 to compute its hash, while put(14, v′14) needs
to update the hash h(n2) stored in n0. These operations touch
unrelated keys and would rarely interfere with one-another in a
regular key-value store.

Computation and communication overheads: Every operation
involves shipping a root-to-leaf path and computing a hash for each
node in the path in the TM, an overhead that is logarithmic in the
database size. As shown in [9], this overhead is a fundamental lower
limit for online verification. Besides, these costs do not amortize
well even if we batch multiple operations together since the proof
paths for different operations do not overlap much unless their keys
happen to be “close-by.” Thus, in general, they cannot benefit much
from shared TM computation or communication. In Section D, we
implement a batched version of Merkle tree and empirically validate
this intuition.

Distributing TM state: Due to the opaque nature of the hash func-
tion, we do not know of any mechanism to distribute the TM state
(i.e. the root hash) to parallelize verification. While we could shard
the key-value data into multiple partitions, build a separate Merkle
tree per-partition, and have a different verifier thread per partition,
this approach does not perform well for skewed workloads where
most of the operations touch a small number of keys.

4. BASIC DESIGN
This section presents a simplified variant of Concerto called Basic

Concerto. Basic Concerto supports no concurrency: it processes
client operations serially with a single worker and a single verifier.
Our goal here is to introduce the central ideas of Concerto and
argue their correctness in a simple setting. Section 5 enhances Basic
Concerto with optimizations including support for concurrency.

4.1 Intuition
To present the intuition behind Concerto design, we revisit the

high-level design of MB-tree: MB-tree stores the current key-value
database instance in the untrusted storage. For any operation, the



UM sends a proof to the TM to verify its result. We can view the
proof as consisting of two parts: (a) partial state from the current
database that establishes the presence or absence of a key and the
current value associated with a key; and (b) information to verify
the integrity of the state in sent in (a). For example, for operation
get(6) in Figure 2, part (a) consists of the leaf node n4. MB-tree
stores the current records in the leaf nodes sorted by their keys, so
node n4 establishes that key 6 is not present; part (b) consists of the
chain of hashes from n4 to the root hash stored within the TM.

Our design uses a different strategy for constructing proof parts
(a) and (b). We modify database storage to store along with each
key-value pair, the next key in the current instance. With this change,
a single record is sufficient for part (a), i.e., to prove the presence
or absence of a key and establish the current value for a key. For
the database of Figure 2, we store as one of the records, the triple
〈5, 7, v5〉, with 7 being the next key after 5; this triple establishes
the absence of key 6 for the get(6) operation above. For part (b), the
UM needs to prove the integrity of a (key, next-key, value) triple. To
do this, we store the current triples in a specially identified memory
and use memory integrity checking algorithms. Our proofs no longer
rely on storing the records sorted, so the triples can be stored in
arbitrary locations of this memory.

This proof construction has several advantages over the MB-tree
one: (1) The proofs of operations touching different keys are distinct
records (triples) and enable better concurrency since they do not
overlap. (2) Our proofs require integrity for individual records, not
sorted sequences. This change removes indexing from the purview
of integrity; we use indexes purely for performance, and any off-the-
shelf index works. (3) With our deferred verification formulation, we
are able to adapt more efficient offline memory checking algorithm
of Blum et al. [5].

4.2 Design Assuming Verified Memory
We first present our design assuming an abstraction of verified

memory, that hides all memory integrity checking details.
Verified memory is a collection of addressed memory locations

called vcells stored in untrusted memory and designed to provide a
verifiable read-write consistent view to the TM. Read-write consis-
tent view means that the contents of a vcell that the TM sees on a
read correspond to the most recent write by the TM to that location;
otherwise, the TM detects an integrity violation. A strawman imple-
mentation of verified memory would be to keep within the TM for
each vcell, a cryptographic hash of its contents; during a read, the
TM checks the hash of the vcell against the stored hash and, during
a write, updates the stored hash. We discuss a better implementation
of verified memory in Section 4.3.

4.2.1 Concerto State
As outlined in Section 4.1, Concerto stores the current key-value

database as (key, nextkey, value) triples in a verified memory in-
stance called VMKV . Figure 3 illustrates this storage for a sample
instance. Formally, let D denote the current key-value database
instance of size n = |D|. Let∞ and −∞ denote special values
of the key domain greater than and lesser than any regular key, re-
spectively. For any key k <∞, let next(k,D) denote the smallest
key in D greater than k, or∞ if no such key exists. For example,
next(−∞, D) = 2 and next(4, D) = 5 for the sample database of
Figure 3. Note that next is defined for all keys <∞, not just keys
in D.

Each vcell in VMKV stores a triple of the form 〈key ,nextkey ,
value〉 along with a status bit indicating if the contents of the vcell
are valid or not. Concerto encodes D as follows:

1. For each 〈k, v〉 ∈ D, there is a valid vcell 〈k,next(k,D), v〉.
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Figure 3: Concerto state for the instance with four key value pairs: 〈5, v5〉,
〈2, v2〉, 〈3, v3〉, 〈7, v7〉. The verified memory VMKV has 8 vcells, five
valid and 3 invalid (shown in grey).

2. There is a valid vcell 〈−∞,next(−∞, D),−〉.

3. All other vcells are invalid.

(We use − to indicate a null value.) The n keys of D partition the
key domain into n + 1 intervals and there exists one valid vcell
for each interval. As noted earlier, this encoding has the property
that for any key k′, we can establish the presence or absence of
k′ in D using a single vcell. For example, in Figure 3, we can
establish that key 4 is absent using VMKV [7]. More generally, for
any key k′, there exists a unique vcell 〈k,next(k,D), v〉 such that
k ≤ k′ < next(k,D) that can be used to determine if k′ is present
is D. We call this the proof vcell, and it plays an important role in
Concerto’s data processing.

Initially, VMKV contains a single valid vcell 〈−∞,∞,−〉 en-
coding an empty database. With data updates, the TM makes
changes to VMKV to maintain the invariant that VMKV encodes
the current database instance.

Concerto also maintains in untrusted memory an ordered index
(called key index) mapping each key in D and the special key −∞
to the vcell storing the key; e.g., in Figure 3, the key index maps key
3 to vcell 7. Standard search tree indexes can be tweaked to return,
given a key k′, the largest indexed key ≤ k′; with our encoding,
this returns precisely the proof vcell of k′ described above. The
key index is required only for performance, and the TM does not
know of its existence. Finally, Concerto keeps track of the unused
(invalid) vcells in a separate data structure in untrusted memory. We
temporarily assume that the size of VMKV is fixed and sufficiently
large to store the database at all times; we present techniques for
growing and shrinking verified memory in Section A.2.

Concerto state invariants might not hold with adversarial tamper-
ing since we store this state in untrusted memory. Such invariant
violations ultimately manifest as read-write consistency violations
of VMKV during key-value operations and are detected by the
TM. We present the processing of key-value operations assuming
the state invariants hold and defer a discussion of how TM detects
tampering to Section 4.2.3.

4.2.2 Processing Key-Value Operations
Recall that every operation has as input parameters a unique

operation id (oid), a key ko, and an optional value vo (for put() and
insert()); a MAC generated using the session key protects these
parameters.



Operation vcells Precondition TM Updates
get(ko) 〈k, k+, v〉 k ≤ ko < k+ unchanged

put(ko, vo) 〈k, k+, v〉 k ≤ ko < k+ 〈k, k+, vo〉

insert(ko, vo)
〈k, k+, v〉

k ≤ ko < k+
〈k, ko, v〉

unused 〈ko, k+, vo〉

delete(ko)
〈k, k+, v〉

k ≤ ko < k+
unused

〈k−, k, v−〉 〈k−, k+, v−〉

Table 1: The proof and aux vcells sent to the TM for various operations,
the conditions that they satisfy, and the new contents of these vcells if the
operation is successful.

Worker thread: The worker thread traverses the key index and
identifies the proof vcell for key ko. Since the proof vcell determines
the presence or absence of ko in the current database, it is sufficient
to determine success/failure of the operation. For an insert or delete
operation which changes the number of records (and therefore the
number of intervals of the key domain), the worker identifies an
additional vcell called an aux vcell. For these operations, the aux
and proof vcells will be modified by the TM to ensure the encoding
described above. For an insert, the aux vcell is an unused vcell,
and for a delete, it is the previous vcell to the proof vcell with the
property aux .nextkey = proof .key . The worker then invokes the
TM VerifyOp() remote call passing along the operation parameters,
the proof vcell, and the optional aux vcell. Table 1 summarizes the
vcells used for each operation. Upon completion, the VerifyOp()
(discussed below) returns a MAC attesting the result of the operation
and possibly new contents for the proof and aux vcells. The worker
thread applies these changes, updates the key index if necessary, and
returns the result of the operation and the TM provided MAC to the
client.

Verifier thread: For each VerifyOp(), the proof and the optional
aux vcells provided as input are considered as TM reads. The
verifier thread, therefore, checks the memory integrity, i.e., if the
contents of these vcells correspond to most recent TM write to
these addresses. (The UM sends for each vcell both its address and
contents.) For our verified memory implementation of Section 4.3,
integrity checking is deferred and handled by a separate verification
step. For presentation simplicity, we temporarily ignore this aspect.

The verifier thread then: (1) checks if the MAC of the operation
parameters matches the MAC sent by the client; (2) checks if the
oid was not previously seen; and (3) checks if the proof and aux
vcells satisfy the pre-conditions of Table 1. Checks (1) and (2)
ensure that the operation is legitimate and not a repeat of a previous
operation. Check (3) is required because the worker thread cannot
be trusted to provide the correct vcells. For Basic Concerto, oid
is a session-local counter that increases with every operation, so
for the check (2) above, the verifier thread checks if the current
oid is greater than the last seen oid; to enable this check, the TM
tracks the last seen oid using internal state. If all the checks pass,
the verifier thread determines if the operation can succeed. If the
operation can succeed, it updates the proof and aux vcells as shown
in Table 1 to maintain the invariant that VMKV encodes the updated
database. These updates are TM writes, and the verifier updates
TM-internal state to help verify the validity of a subsequent read to
these locations (Section 4.3)1 Finally, it generates a MAC attestation
for the concatenation of oid, operation success, and the return value
(for get()) using the session key. It returns the updated vcells and
the MAC attestation.

EXAMPLE 1. Consider the sample database of Figure 3. For a
1Our use of the terms read and write is non-standard in the sense that the
TM does not pick the vcells to read. The UM picks the vcells that TM reads
and applies the updates sent back by the TM.

get(4) operation, the worker thread sends the proof vcell VMKV [7]
= 〈3, 5, v3〉 along with the operation parameters. This vcell estab-
lishes to the verifier that key 4 is absent from the database, so the
verifier generates a MAC for (oid || fail).

For an insert(9, v9) operation, the worker sends VMKV [4] =
〈7,∞, v7〉 as the proof vcell and the unused vcell VMKV [3] as the
aux vcell (VMKV [5] or VMKV [6] could have been used as well).
The proof vcell establishes that key 9 is absent, so the insert oper-
ation succeeds. The verifier generates a MAC for (oid || success)
and updates VMKV [4] to 〈7, 9, v7〉 and VMKV [3] to 〈9,∞, v9〉.
The resulting state of VMKV encodes the database with five key-
value pairs 〈5, v5〉, 〈2, v2〉, 〈3, v3〉, 〈7, v7〉, and 〈9, v9〉.

4.2.3 Correctness Argument
We now discuss how our design provides the integrity guarantees

specified in Section 2.3. For simplicity, we assume temporarily that
memory verification is online, so a TM read inconsistent with the
previous write is detected at the time of the read. We later extend
these arguments for deferred memory verification.

To formalize Concerto’s integrity guarantees, we focus on the
TM view of the processing. The TM sees a sequence of VerifyOp()
calls each corresponding to an operation. For some of these calls,
the verification checks fail, and the TM returns an error code. For
others, the checks pass and the TM returns a MAC attesting the
operation result and some vcell updates (TM writes). We call an
operation whose VerifyOp() call passes all checks as TM verified
and the attested result a TM verified result. Under normal processing,
without adversarial tampering or failures, all client operations would
be TM verified. The following theorem formalizes the integrity
guarantees of Concerto:

THEOREM 1. The sequence of TM verified operations and their
TM verified results represents correct key-value functionality. Fur-
ther, the sequence contains only legitimate client operations without
repetition.

Correct key-value functionality means that if we run the same oper-
ation sequence on a correct untampered key-value store, we will get
the same result for every operation as the TM verified one. Since
the client accepts only TM verified results, the integrity guarantee
of Theorem 1 is consistent with our definition of integrity from
Section 2.3.

To see how Concerto provides this guarantee in the presence of
an adversary who controls the UM state and processing, we focus
on the TM view of the system. At any given point, the TM has
verified some sequence of operations H . Let DTM (H) denote
the database instance corresponding to these operations; DTM (H)
is an abstract concept, and the actual database instance stored in
the UM may not be DTM (H) if there is tampering. Similarly,
when processing H , the TM performs various vcell writes. Let
VMTM

KV (H) denote the verified memory state implied by these
writes. Again, VMTM

KV (H) is an abstract concept, and the actual
state of VMKV in the untrusted system after processing H may
not correspond to VMTM

KV (H). The important observation is that
if the UM provides an input vcell for the next operation that is
inconsistent with VMTM

KV (H), the TM detects this inconsistency
during memory verification. Using this observation, we can show
using induction that at any point VMTM

KV (H) correctly encodes
DTM (H). This is true at the beginning before any operations. By
induction hypothesis and memory verification, the TM sees “correct”
vcell contents for an operation; if the TM sees correct vcells contents,
we can show, by considering each operation type, that the TM
identifies the correct result and makes the correct changes to the
vcells. The full version [1] contains a formalization of this argument.



4.2.4 Discussion
We highlight a few aspects of our verified memory based design:

Similarity to regular key-value store: Concerto is not very differ-
ent from a traditional key-value store. A traditional key-value store
has an index over the keys, and the key-value records are the stored
in the leaf nodes of the index. Concerto uses a similar index with a
level of indirection, with the leaf nodes pointing to the actual records
encoded within verified memory. Most of the computational work
in a key-value store occurs in the index traversal. For Concerto too,
the bulk of work is the UM index traversal. The TM-verification
while subtle involve O(1) simple checks.

TM State: The key-value portion of the verification requires no TM
state and therefore parallelizes easily. Memory verification, how-
ever, requires TM state and does not lend itself to straightforward
parallelization (Section 5.2).

Deferred verification: We made no reference to DefVerify() in
this section: our deferred integrity guarantees ultimately arise due
to deferred nature of memory verification, and we discuss the imple-
mentation of DefVerify() in Section 4.3.

4.3 Verified Memory
Recall that verified memory is a collection of addressed cells

stored in the UM but designed to provide a verification-based read-
write consistent view to the TM. To implement verified memory, the
TM needs to check if each read is consistent with the most recent
TM write to that location. While Merkle trees can be used to imple-
ment verified memory [39], this approach inherits the fundamental
limitations highlighted in Section 1.

Our idea is to use deferred memory verification, where checking
read-write consistency does not happen during reads but in a sep-
arate step. Deferred memory verification allows us to use offline
memory checking algorithm of Blum et al. [5] (hereafter, Blum
algorithm) which we show can be adapted to yield a lightweight and
parallelizable verification. We begin by presenting intuition behind
Blum algorithm before formalizing deferred memory verification
and specifying implementation details.

Blum Algorithm: Intuition
In a read-write consistent memory, every read corresponds to the
last write to that location. Read-write consistency implies that the
read-set (RS) defined as the set of (address, content) pairs seen
by TM during reads closely tracks the write-set (WS) defined as
the set of (address, content) pairs that TM writes. In fact, we
can show that RS ⊆ WS and (WS − RS) contains exactly one
entry for each location corresponding to its last write. Figure 13
illustrates this property for a memory comprising two vcells. So,
in an offline step, if we scan the entire memory and update the RS
with the (address, content) pairs seen,RS =WS for a read-write
consistent memory. Conversely, any read-write inconsistency results
in RS 6=WS. Checking for this equality forms the intuitive basis
for the Blum algorithm.

Hash function for sets: Storing read- and write-sets is expensive,
and Blum algorithm relies on a specially constructed collision resis-
tant hash function h over read-write sets; i.e., h has the property that
for any two sets S1 = S2 implies h(S1) = h(S2), and S1 6= S2

implies h(S1) 6= h(S2) with high probability. Further, hash func-
tion h is incremental, so h(S∪{e}) is computable from h(S) and e.
Blum algorithm maintains h(RS) and h(WS) (inside TM) during
memory operations. During the offline verification step, it scans
the entire memory, updates h(RS), and checks h(RS) = h(WS).
The Blum algorithm as presented fails if there are pure reads (the

Operation Steps
read(vcell) hrs ← hrs ⊕ PRF (vcell.addr, vcell.content)

write(vcell)
TC ← max(TC, vcell.timestamp) + 1
vcell.timestamp← TC
hws ← hws ⊕ PRF (vcell.addr, vcell.content)

Table 2: Details of TM read() and write() methods.

TM reads but does not update) or if writes are not unique. To fix this,
Blum algorithm adds a timestamp field to memory cells; this field is
updated using a TM-internal counter every time a vcell enters TM;
this change eliminates pure reads and makes every write unique.
This feature is also a limitation of the Blum algorithm since it im-
plies that we need to log timestamp changes even for key-value read
operations. Our implementation of logging includes optimizations
to minimize the overhead. Ultimately, we show empirically that this
additional logging does not significantly affect performance.

Deferred Memory Verification
Deferred memory verification generalizes the idea of offline memory
checking. Regular reads and writes do not detect memory integrity
violations but merely update internal hashes. Memory integrity
violations are detected in a separate verification step that involves
scanning the entire memory.

This verification step is triggered when the client invokes the
DefVerify() operation. To support deferred verification, the TM
exposes three methods: DefVerifyBegin(), DefVerifyNext(vcell)
and DefVerifyEnd(). These methods are called by the worker
thread handling DefVerify() to initialize, iterate over all vcells, and
obtain the result of verification, respectively. (DefVerifyEnd() also
generates a MAC using the client session key to protect the result of
the verification.)

Unlike offline memory checking, a theoretical idea where mem-
ory is checked at the “end of time,” deferred verification can be
run any number of times, and each run verifies the integrity of all
memory operations since the previous run. In Section 5, we present
techniques to make deferred verification concurrent with regular
data operations.

TM State and Read-Write operations
The TM maintains a read-set hash hrs, a write-set hash hws, and a
timestamp counter TC. Two TM internal methods read(vcell) and
write(vcell) are used to record TM reads and writes, respectively.
The VerifyOp() method calls read() with its input (proof and aux)
vcells, then makes any changes to these vcells, and calls write()
with the updated vcells before returning.

All vcells have an additional timestamp field required for mem-
ory verification, so vcells of VMKV have three data fields (key ,
nextkey , and value), a status bit, and a timestamp.

Table 2 shows the details of read() and write() methods. The
read() method updates the read-set hash hrs, and write() does
the same for write-set hash hws. The hash function that we use
hashes a set (or a bag) by xor’ing the image of each element under
a pseudo-random function. Our hash function is different from
Blum’s: Blum et al. [5] show that a hash function constructed as
above but with a random function is secure, but eventually provide a
complex construction designed to minimize the required number of
random bits. We use an AES-based pseudo-random function [37];
assuming that it is indistinguishable (as widely believed) from a true
random function, we get the same security properties.

The write(vcell) method updates the TC counter and sets
vcell .timestamp to the updated TC value. TC is updated to
max(TC, vcell.timestamp)+1. This is a subtle change from the



Operation Steps
DefVerifyBegin() hwsnew ← 0, TCnew ← 0

DefVerifyScan(vcell)

hrs ← hrs ⊕ PRF (vcell.addr, vcell.content)
TCnew ← TCnew + 1
vcell.timestamp← TCnew

hnew
ws ← hnew

ws ⊕
PRF (vcell.addr, vcell.content)

DefVerifyEnd() succ← (hws = hrs)
hrw ← 0, hws ← hwsnew , TC ← TCnew

Figure 4: Details of TM deferred verification methods.

original Blum algorithm, which checks TC >= vcell .timestamp
and increments TC. The normal case behavior of both variants is
identical but when they detect memory integrity violations is slightly
different. This change helps in parallelizing memory verification
presented in Section 5.2. We prove the correctness of this variant in
the full version [1].

Memory Initialization: The TM initializes hrs ← hws ← TC ←
0 and calls write() on each vcell with its initial contents. Re-
call from Section 4.2.1, for VMKV , one vcell is initialized to
〈−∞,∞,−〉 and all others are marked as unused. This initial-
ization establishes the RS, WS invariant described earlier (under
hashing).

Deferred verification: Implementation
Deferred memory verification is performed by calling DefVerify-
Begin(), iterating over each vcell using DefVerifyNext(vcell), and
calling DefVerifyEnd() to obtain the boolean result of verification.
Consistent with our informal description, DefVerifyNext(vcell)
internally calls read(vcell) to update hrs, and DefVerifyEnd()
returns the truth value of the equality (hrs = hws) as the result of
verification. To enforce each vcell is visited exactly once during the
scan, the TM expects the vcells to be scanned in address order and
uses a temporary internal variable to track the next expected address
and enforce this ordering.

In addition to verifying prior operations, these methods also per-
form initializations required for the next verification. During the
verification scan, memory is effectively “re-initialized” with current
(verified) content, but with new timestamps for each vcell; TM in-
ternal state, hws, hrs, and TC, is reset at the end of verification to
reflect this re-initialization. Figure 4 presents these details.

5. ENHANCEMENTS
In this section, we present various optimizations that remove the

restrictions of Basic Concerto including allowing for an arbitrary
number of workers and verifiers.

5.1 UM Optimizations
Recall that the correctness of Basic Concerto relies only on the se-

quence of VerifyOp() calls to the TM. Therefore any optimization
that preserves the “TM view” of Basic Concerto (same sequence of
VerifyOp() calls) maintains the integrity guarantees.

A related observation is that verified memory state changes are
UM-computable: While in Basic Concerto, we relied on the TM
returning updated contents of input (proof and aux) vcells, as Ta-
ble 1 suggests, the UM has sufficient information to compute these
changes without relying on the TM. This observation is valid also
for the timestamp field within vcells which depends on a TM in-
ternal counter: the TC counter deterministically increases by one
after every operation so the UM can predict the current value of this
counter. (The vcells still need to be sent to the TM for the side-effect
of updating TM internal hashes.)

We use these two observations to make Concerto multi-threaded
in the UM. Each worker thread now handles a client operation and
makes all state changes in the UM simulating what Basic Concerto
would have done with a TM VerifyOp(). Except for minor differ-
ences in how data records are encoded and the additional timestamp
field, this part of Concerto processing is independent of integrity
and similar to what happens in any key-value store. An important
component of this UM processing is the key index used to efficiently
identify the raw key-value data relevant to each operation: Our cur-
rent prototype uses Bw-Tree [21], a multi-threaded lock-free index,
but any index could be used.

Once a worker completes all the UM state changes for an opera-
tion, it fires off an asynchronous VerifyOp() with the pre-images of
relevant vcells—so the TM reads the state before any changes—and
then moves on to the next client operation. We still have a single
verifier thread that handles the VerifyOp(). This operation now
returns only the result MAC, not the updated vcell values but is
otherwise unchanged. (The updated vcell values are still internally
computed to update the write-set hash). When the verifier is pro-
cessing a VerifyOp() the UM could generate other VerifyOp()s
and these are enqueued at the UM. This queue decouples UM and
TM processing in Concerto, and at any time, the key-value state in
the UM could be ahead of the state in the TM implicitly captured in
the read- and write-set hashes.

Finally, Concerto batches the parameters and results of multiple
VerifyOp()s into a single call. This batching reduces the number
of UM-TM roundtrips and is critical for trusted platforms such as a
PCIe-based FPGA where each roundtrip incurs significant latency.

5.2 Parallelizing Verification
We now present extensions to Concerto that parallelize TM pro-

cessing using multiple verifier threads so that different threads con-
currently handle different VerifyOp() calls. There is no affinity
between TM verifiers and UM workers in our design: A VerifyOp()
from any worker can be handled by any verifier.

High-level Insight
Only the memory verification component of TM processing which
involves recording vcell reads and writes into hashes is stateful. The
key-value component is stateless except for the session key which is
read-only after session-setup and therefore does not interfere with
concurrency.

One mechanism for parallelizing memory verification is to shard
the verified memory and have each verifier thread own a shard.
We do not rely on such sharding, which would perform poorly for
skewed workloads.

Our design allows VerifyOp() to be routed to any verifier, mean-
ing any vcell can be read and written by any verifier. Each verifier
tracks its own read- and write-set hashes corresponding to the vcell
reads and writes in its VerifyOp()s. During deferred verification,
the verifier-local read- and write-sets hashes are combined to create
hashes of the global read- and write-sets. The key insight is that the
xor operation used in the construction of hash is distributive, so the
global read- and write-set hashes can be computed by xor’ing the
local ones. Finally, we check the equality of the global read- and
write-set hashes to determine if memory operations were read-write
consistent. Figure 14 illustrates these ideas for reads and writes of a
single vcell across two verifiers.

Details
Each verifier thread has a unique id and maintains local read- and
write-set hashes and a TC counter; for thread i, we refer to this
state using hrs(i), hws(i), and TC(i). Each vcell, in addition to



Operation Steps
read(vcell) hrs(i)← hrs(i)⊕ PRF (vcell.addr, vcell.content)

write(vcell)

TC(i)← max(TC(i), vcell.timestamp) + 1
vcell.timestamp← TC(i)
vcell.vid← i
hws(i)← hws(i)⊕ PRF (vcell.addr, vcell.content)

Figure 5: Details of TM read() and write() methods at verifier i.

the timestamp field now contains a vid field that records the id
of the verifier that saw the most recent write to the vcell. The
read() processing is unchanged and the write() processing is un-
changed except that vcell.vid field is updated with the id of the
verifier thread. Deferred verification methods DefVerifyBegin(),
DefVerifyNext(), and DefVerifyEnd() are sent a special leader
verifier (say, with id 0). The implementation of these steps is similar
to the non-parallel case, except DefVerifyEnd() aggregates indi-
vidual read- and write-hashes into global read- and write-hashes
using an xor before checking their equality. Figure 5 presents these
details.

Meaning of timestamps: In the non-parallel version, TC is an
internal clock that tracks the number of writes since the previous
deferred verification, and the timestamp field for a vcell is the time
of its most recent write. In the parallel version, per-verifier TC(i)
can be viewed as a collection of distributed Lamport’s clocks [19]
if we treat the vcells as “messages”: If verifier i writes a vcell with
timestamp ti a different verifier j that next reads this vcell updates
its timestamp to 1 +max(ti, TC(j)). This timestamping scheme
ensures that a read time is always less than the time of the next write
to a vcell, a property that is critical to argue correctness. We prove
the correctness of this scheme in the full version [1].

5.3 Non-Quiescent Deferred Verification
In Basic Concerto, deferred memory verification is monolithic:

once deferred verification starts (DefVerifyBegin), there are no
data operations until all vcells are scanned using DefVerifyNext()
and DefVerifyEnd() returns the verification result. We now extend
Basic Concerto to allow DefVerifyNext() calls to be interspersed
with regular data operations (and therefore memory reads and writes)
and then describe how these extensions work with the other opti-
mizations described in Sections 5.1-5.2.

In Basic Concerto, we imagine the entire system as existing in
an integer epoch: Initially, the system is in epoch 0 and the current
epoch increases by one after every deferred verification scan. We
begin our modifications by using different TM state for each epoch:
the state for epoch e consists of the read- and write-set hashes
hrs[e] and hws[e], and counter TC[e]. In epoch e, reads and writes
update hrs[e] and hws[e], respectively, and use TC[e], instead of
the unindexed hrs, hws and TC. Clearly, separating the TM state
in this way does not impact correctness.

The basic idea to break up the monolithic deferred verification
is to use the epoch indexed state to let memory exist in two epochs
simultaneously: some vcells exist in the current epoch e and others
in the next epoch e+1. We use the same TM methods as before and
we interpret DefVerifyNext() as transitioning its input vcell from
epoch e to epoch e+ 1. Regular memory read-write operations can
now occur between two DefVerifyNext() calls. In the implementa-
tion of these operations, a vcell that has been transitioned to epoch
e+1 uses hrs[e+1], hws[e+1], and TC[e+1], and vcell yet to be
transitioned uses hrs[e], hws[e], and TC[e]; all other details of TM
read-write methods are unchanged. DefVerifyNext(vcell) itself is
special: it reads the input vcell in epoch e and writes the output to
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Figure 6: The idea of epochs for non-quiescent deferred verification:
DefVerifyNext has been called on vcells 0-5. A read-write operation
on vcell 2 now uses hrs[e+ 1], hws[e+ 1], and TC[e+ 1]. A read-write
operation on vcell 9 uses hrs[e], hws[e], and TC[e].

epoch e+ 1. Finally, DefVerifyEnd() checks hrs[e] = hws[e] as
before. Figure 6 illustrates this overall scheme.

The epoch mechanism is a logical concept that emerges from
the sequence of DefVerifyNext() and DefVerifyEnd() calls. In
particular, vcells are not physically copied to a different location
when they transition epochs; we do not maintain state within each
vcell recording which epoch the vcell belongs to. For correct-
ness, the sequence of DefVerifyNext() calls is constrained to
happen in increasing order of vcell addresses as illustrated in Fig-
ure 12. To enforce this order, the TM maintains an internal counter
next_transition_addr that tracks the address of the next vcell to
be transitioned to the next epoch. This counter also helps the TM
determine the epoch to which a vcell belongs: vcells with an address
less than next_transition_addr belong to the next epoch, and the
rest, to the current epoch. In Figure 6, the value of this variable is
6. Once all vcells have been transitioned to the next epoch, the TM
expects a DefVerifyEnd() call to verify the integrity of memory
operations of the current epoch. We note that there are at most
two active epochs at any given point and the DefVerifyEnd() calls
happen in the increasing order of epochs.

To argue correctness, we can show that any sequence of read(),
write(), and deferred verification calls can be reordered to an equiv-
alent sequence that has the same final hash values (hrs[e], hws[e] for
all epochs e) but where the deferred verification calls are contiguous
like in Basic Concerto.

Since only two epochs are active at any point in time, it suffices
to store hrs, hws, and TC for the current and next epoch, for a total
of four hash values and two timestamp counters. As noted above,
the TM also maintains a counter next_transition_addr to help
constrain epoch transitions.

TM parallelism: When there are multiple verifier threads, each
thread maintains its local (four) hashes and (two) timestamp coun-
ters. As in Section 5.2, all deferred verification is handled by a
special verifier thread with id 0. This thread also maintains the
next_transition_addr variable to check the completeness of de-
ferred verification scan. The main issue is for other verifier threads
(which do not have this variable) to determine if a vcell that they
see is in the current or next epoch. To enable this, we add an epoch
field to the vcells; in fact, instead of the full epoch number, we
store the parity of the vcell’s epoch. Since each verifier tracks the
current epoch, it can use the parity bit to determine if a vcell is in
current or next epoch. We can show the regular memory verification
mechanisms prevent tampering of the epoch parity field.

Continuous background verification: Based on the techniques
described here, Concerto runs deferred verification as a continuous
background operation that scans the verified memory at a config-



ured rate transitioning vcells to the next epoch. When a client
invokes DefVerify(), this call attaches itself to the current scan
and gets the result at the end of the scan from the corresponding
DefVerifyEnd() call. We note that different client processes can
concurrently invoke DefVerify() and all these calls share the same
scan and the result. In our current prototype, the scan rate is config-
ured by a parameter V with the interpretation that we transition one
vcell after every V data operations.

6. IMPLEMENTATION
Our current prototype implements the techniques and optimiza-

tions presented in Sections 4-5. For the key-index, we use Bw-
Tree [21], a state-of-the-art latch-free main-memory index structure.
We implemented our own logging module that includes some low-
level optimizations to log timestamp increments for data read opera-
tions compactly. The prototype starts with verified memory of size
one containing the vcell 〈−∞,∞,−〉 and uses memory elasticity
techniques (Section A.2) to adjust the size of memory. Concerto
currently supports two trusted platforms that we describe next.

6.1 FPGA-based Trusted Platform
Prior work [39] has shown that FPGA can be used as a trusted plat-

form for integrity verification; this paper also contains details such
as embedding keys and non-volatile memory required for integrity.

As part of this work, we have designed an highly optimized FPGA
circuit that implements the TM verification functionality described
earlier. Briefly, our design involves multiple FPGA cores and each
core implements the functionality of one verifier thread: at each step,
it consumes a batch a VerifyOp()s, updates internal read and write-
set hashes, performs checks specified in Section 4.2, and returns
a result MAC for each operation result. Our design incorporates
several hardware-level optimizations such as pipelining AES block
computations—our PRF [37] and MAC are both AES-based, so
AES block computations form the bulk of verification computations.
A full description of these optimizations is outside the scope of this
paper but Section A.1 offers a brief summary.

As a representative number illustrating our design optimizations,
with 8-byte keys and 8-byte values, a single core of the FPGA circuit
is theoretically able to process 19M inserts/sec and 27M lookups/sec,
with a 175 MHz clock. As we will see, a single FPGA core is able
to handle verification input from 20 worker threads running on 20
cores on a server-grade machine.

6.2 SGX-like Trusted Platforms
We also have a C++ implementation of the TM functionality for

emerging platforms such as Intel SGX [24] that support regular
binaries to be loaded and run within the platform. While server-
grade Intel CPUs supporting SGX are not yet available, prior work
has suggested a methodology for simulating SGX performance on
an Intel CPU without SGX [4, 35]. This methodology essentially
adds a penalty (e.g., TLB flush) every time a thread enters the
enclave (trusted) mode. While we do report numbers based on
this simulation, we expect these numbers to be ballpark and useful
mainly to illustrate relative performance; in particular, we use this
to compare the performance of MB-tree with Concerto. Our C++
implementation also quantifies the size of our trusted code (TCB)—
around 100 lines of C++ code not counting the crypto libraries for
AES block computations.

7. EXPERIMENTS
This section presents the results of an experimental evaluation

of Concerto. The goals of our experiments is to: (1) evaluate the

overhead of integrity in Concerto by comparing it against a key-
value without integrity; (2) evaluate the performance advantages of
our design compared to a Merkle-tree based approach; (3) study
the tradeoff between deferred verification rate and throughput in
Concerto; (4) understand concurrency characteristics of Concerto by
varying available parallelism in the untrusted and trusted platforms.

7.1 Benchmark and Methodology
All experiments reported in this paper were performed using the

YCSB benchmark [7] designed for key-value stores. Each exper-
iment involved loading an initial state of the database and then
running one of four workloads described below against it. We used
8-byte integers for both keys and values. The initial database con-
sisted of N key value pairs with all keys in the range 1 . . . N and
values picked randomly. Unless otherwise stated, we used N = 10
million pairs as the initial database size.

We used the following four workloads specified by YCSB:

1. A. Update-heavy: This workload consists of 50% get() oper-
ations and 50% put() operations.

2. B. Read-heavy: This workload consists of 95% get() opera-
tions and 5% put() operations.

3. C. Read-only: This workload consists of 100% get() opera-
tions.

4. D. Inserts: This workload consists of 95% get() operations
and 5% insert() operations.

For workloads A, B, and C, the keys of all get() and put() oper-
ations were in the range [1 . . . N ], where N is the database size
(which does not change for these workloads). Since these keys
are all present in the database, all operations were successful. As
specified in the benchmark these keys are generated using a Zipf
distribution. Sampling from the Zipf distribution requires assigning
a frequency rank to the keys: As per the benchmark specification,
we used a random permutation of the key-domain for the ranking,
so the frequently used keys were randomly sprinkled across the key
domain. For workload D, the newly inserted keys are random keys
not in the original database; a Zipf distribution is used to pick keys
for get() operations, but the rank is derived using recency, i.e., the
most recently inserted key is queried with the highest probability.

Unless otherwise specified, we ran the experiments as follows:
Each experiment was repeated three times and in each of these
three runs 100 million operations specified by the corresponding
workload were evaluated. We measured both throughput and latency.
The throughput was measured as an average throughput over time
(while a run was executed) and across the three runs. For Concerto,
we included the time for deferred verification when calculating
throughput numbers. The throughput variance was small so we do
not show error bars. For the latency experiments, we show both the
median and the 90% quantile over all three runs.

We implemented the YCSB benchmark driver in C++ and all the
systems being compared were linked to the driver code as a library.
This means that all the key-value operations were simple function
calls and the same thread assumed the role of both workload gen-
erator and the (UM) worker. Our results, therefore, do not include
network effects which could dampen the overhead of integrity. The
workload generation itself is lightweight and forms an insignificant
part of the overall CPU costs.

7.2 Systems Compared
We compared the following systems in our evaluation:



• No Integrity Baseline: We used Bw-Tree [21] as the baseline
system without integrity.

• Concerto(FPGA): This system is the Concerto prototype of
Section 6 with the FPGA-based TM presented in 6.1.

• Concerto(SW): This system is Concerto where the TM func-
tionality is implemented in regular C++ code as discussed in
Section 6.2.

• Merkle (SW): We implemented the MB-trees by extending
Google B-trees, an open source implementation of B-trees.
Here again, the trusted code is regular C++ code running in a
separate thread as discussed in Section 6.2.

• Merkle with Batching (SW): We extended the MB-tree above
to support batching. The combined proof of a batch of oper-
ations is the union of the proof-paths of each operation, i.e.,
a subtree of the MB-tree. The TM verifies the integrity of
the entire subtree and returns new hash values for all nodes
in the subtree, except the root which is maintained within
the TM. We expect batching to improve performance since
hash computations are shared across operations; batching also
reduces contentions between operations within a batch.

All experiments were carried out on a dual-socket 3.4 GHz Win-
dows Server 2012 machine with 6 physical/12 logical cores per
socket and 128 GB of main memory. Logs were written to a Sam-
sung MZHPU512HCGL SSD (PCIe 2.0 x4) with a maximum read
and write bandwidth of 1170MB/s and 930MB/s respectively. The
Concerto(FPGA) system used an Altera Stratix V GSD5 FPGA
connected via PCIe 3.0 x8 (a theoretical bi-directional bandwidth of
7.7GB/s).

For Concerto systems, a deferred verification operation was al-
ways on in the background. Unless otherwise mentioned, we con-
figured these systems to verify (transition to next epoch) one vcell
for every 16 data operations. Therefore, hypothetically, if Concerto
processes 1M operations per second on a database instance of size
1M records, then each complete deferred verification scan takes 16
seconds, meaning each operation is verified within 16 seconds of its
completion (our actual numbers are in the same ballpark).

7.3 Exp 1: Throughput , Vary UM Cores
Figure 7 shows the throughput of the four compared systems for

workloads A, B, C, and D. In these experiments, we used one verifier
thread (for systems supporting integrity) and varied the number of
UM workers, each pinned to a separate CPU core.

Our first observation is that for all workloads, the throughput
of Concerto(FPGA) is competitive with the non-integrity baseline
and is at most a factor 2 away. We reiterate that these through-
put numbers include the cost of the deferred verification. While
the actual throughput numbers vary, the relative performance of
Concerto(FPGA) vs. non-integrity baseline does not significantly
change as we vary the workload characteristics from read-only to
update-heavy.

Second, we note that the performance of all systems except
Merkle(SW) increases almost linearly as we increase the paral-
lelism in the untrusted system. In particular for Concerto(FPGA),
since we keep the number of verifier threads the same (one), this
indicates that the untrusted functionality (key index traversal, se-
rializing VerifyOp() parameters, and logging) is the bottleneck.
Although both have the same bottleneck, the performance of Con-
certo(FPGA) is less than that of the non-integrity baseline, since
Concerto(FPGA) does additional UM work (e.g., serializing pa-
rameters) and also incurs additional contention for the TM-bound

VerifyOp() queue. The UM being the bottleneck also explains
why the performance of Concerto(FPGA) is comparable to Con-
certo(SW), although these two use vastly different TM computa-
tional platforms (CPU vs. FPGA) and vastly different UM-TM
communication (PCIe bus vs. shared memory).

Third, the large asymmetry between the number of worker threads
(up to 12) and the number of verifier threads (fixed at 1) in these
experiments demonstrates the lightweight nature of Concerto’s TM
functionality.

Fourth, our throughput numbers expose a subtle trend when
we move from a update-heavy workload (A) to a read-only work-
load (C). As expected, the performance of the non-integrity base-
line increases significantly—around a factor 1.6 for the 12 worker
case. The performance improvement of Concerto is modest by
comparison—around a factor 1.2. This happens because Concerto
pays a logging overhead even for a read-only workload (due to Blum
algorithm timestamps) while the no-integrity baseline does not.

Last but not the least, the performance of Concerto(SW) is about
three orders of magnitude greater than that of Merkle(SW). Adding
batching to Merkle tree does not significantly improve performance.
Figure 8 compares the performance of batched Merkle tree against
the non-batched version (leftmost data point with batch size 1). The
performance improvement of batching flattens out after a batch
size of about 20. The various counters (e.g., the number of nodes
hashed) we collected from the experiments indicate that batching
does not significantly reduce hash computations, which is the overall
bottleneck of the system. As suggested in Section 3, this happens
since different operations do not share their proof paths. These
numbers support the central thesis of this paper that a batched
and deferred verification model can be leveraged for tremendous
performance gains.

7.4 Exp 2: Throughput, Vary Epoch Transi-
tion Rate

Recall that in our current prototype, a verification scan that tran-
sitions each vcell from one epoch to the next is always “on” in the
background. This transition is programmed to happen at a fixed rate
of 1 vcell epoch transition (DefVerifyNext call) for every R nor-
mal key-value operations, where R is a configurable parameter that
controls the rate of epoch transition. A smaller value of R implies
higher verification rate and shorter epochs; since we do more verifi-
cation work per key-value operation, we expect lesser throughput.
In all the previous experiments, R was set to 16. In this experiment,
we vary R and study the effect on throughput. Figure 9 shows the
actual trend that we observe is consistent with this expectation.

We can use the results of Figure 9 to determine the maximum
delay in detecting integrity violations. Integrity violations are de-
tected once all vcells are transitioned from current to next epoch. At
R = 2, Concerto achieves a throughput of about 2M ops/sec, so it
transitions vcells from current epoch to the next at the rate of 1M
vcells/sec. Since the overall size of verified memory ≈ 10M , the
size of the database, the epoch transition rate for the entire memory
is about 10 seconds.

The main takeaway here is that absolute time for each verification
can be made relatively small without seriously affecting perfor-
mance. For example, we can achieve most (90%) of the throughput
while verifying the entire database every 20 seconds. This means
that any database tampering by an adversary would go undetected for
a mere 20 seconds before Concerto detects it. We believe for many
applications, the 20-second delay in detecting tampering might be
acceptable given the three orders-of-magnitude performance im-
provements that this delay enables.
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7.5 Exp 3: Throughput, Vary TM Cores
In this experiment, we enable additional parallelism in the trusted

platform and study its impact on overall throughput. As noted in
Section 7.3, the overall bottleneck in the system for the configuration
studied there was the untrusted processing. Therefore, enabling
additional parallelism in the TM does not help, and our experiments
(not shown) validate this. This observation remains valid with
Concerto(FPGA) even when we increase the number of workers
(and CPU cores) to 202; our FPGA TM was simply able to handle
the increased verification work without becoming a bottleneck. This
changes when we switch to Concerto(SW): Figure 11 which shows
the overall throughput for workload C when we vary the number
of UM cores from 4-18 and the number of TM cores from 1-2.
With 1 TM core, the throughput tapers off at around 12 UM cores
suggesting that the TM becomes the bottleneck. With 2 TM cores,
the throughput keeps increasing until 18 UM cores. This experiment
suggests that with sufficient UM parallelization, a non-parallel TM
can become the bottleneck and our parallelization techniques of
Section 5.2 are important to make the best use of available UM and
TM hardware parallelism.

7.6 Exp 4: Performance of Recovery
As noted in Section C, in the worst case, the adversary can intro-

duce errors and arbitrarily slow down Concerto. That said, a key

2For this experiment alone, we switched to a different machine with 10
physical and 20 logical cores.
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value store can have a broad spectrum of error conditions, not nec-
essarily all malicious. In this experiment, we seek to understand the
performance of Concerto in the presence of such errors. We devise
a synthetic experiment where we inject memory corruption into the
system at a controllable rate and study the effective throughput. The
log itself is untampered, so Concerto rolls back to the most recent
verified epoch (which is the previous epoch of the one where the
error is detected). In our current prototype, recovery is quiescent (no
data operations). For the setup of this experiment, it involves apply-
ing the log from the previous epoch and running a verification scan
over the memory, which succeeds since log records are untampered.
In addition to the fault injection rate, we vary the epoch transition
rate using the parameter R described in Experiment 7.4.

Figure 10 plots the overall throughput of the system, factoring
in the lost work due to the fault and reduced performance due to
recovery, for different settings of the epoch transition rate parameter.
As Figure 10 indicates, the effective performance drops precipitously
as the fault interval approaches the epoch duration (around 1 minute),
but quickly approaches normal performance as the error rate interval
increases beyond the epoch duration. Also, as expected, at higher
fault rates, configurations that use shorter epochs (smaller R value)
outperform configurations with larger epochs, since they have lesser
wasted work and a shorter log to process during recovery.
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APPENDIX
A. ADDITIONAL DETAILS

A.1 FPGA as the trusted machine
An important building block of Concerto is server-side trusted

computing. One contribution of this work is that we have shown that
a single-core FPGA-based implementation of the TM can accommo-
date the full workload generated by a server-class machine. Here,
we would like to provide some background on both the nature of the
FPGA as a trusted computing element and a brief description of our
hardware implementation of the Concerto TM. In [10], the authors
describe a methodology to use existing commodity FPGAs to build
a cloud-based trusted computing platform. This work describes the
bootstrapping of the FPGA with a cryptographic identity and the
subsequent loading/authentication of application code, in this case,
our implementation of the Concerto TM.

Each FPGA-based Concerto TM is heavily pipelined for maxi-
mum performance. As shown in Figure 15, for each batch of data
the TM must: (1) update read-set hashes for all vcells, (2) check the
MACs of operations to verify their integrity, (3) update the contents
of input vcells based on the operations, (4) update the write-hashes
using the updated vcells, and (5) generate the output MACs for
the results. One important computation to both the MAC and hash
operations is an AES block operation. In our implementation, we
use two fully unrolled AES modules.

Each input batch is serialized as a sequence of vcells and opera-
tions: given that vcells and operations are streamed onto the FPGA

and that our AES block implementation can compute hash updates
and MACs in completely pipelined fashion, we use the same AES
module (A in Figure 15) for both computations. VCells are stored
in internal memory (module B) and updated by the input operations
(module C). As discussed in Section 5.1 , a vcell could be updated by
multiple operations and the final updated version of the vcell is used
to update the write-set hash. As an optimization, we speculatively
compute the write-set hash delta whenever a vcell is updated; if
the same vcell is updated again, we undo the previous update (by
xor’ing the previous hash delta) and apply the new delta. We use
separate AES modules (D and E) for computing the write-set hashes
and the result MACs; the latter is streamed out back to the UM.

This fully pipelined implementation allows a single TM core to
process batched operations at 1.4 GBps. Extrapolating, if the UM
were to be able to saturate the PCIe connection with work, five
TM cores would be needed to prevent the TM from becoming a
bottleneck. However, as shown Section 7, even the baseline system
with no integrity creates only 0.5 GBps of verification work for the
TM. That said, each TM core occupies 21% of FPGA resources
on the Altera Stratix GSD5 chip used in our testing, so adding TM
instances is possible.

A.2 Verified Memory Elasticity
We describe memory elasticity for Basic Concerto of Section 4;

extending these details to Concerto with optimizations of Section 5
is straightforward and uses the idea of relying on a special verifier
thread for memory elasticity operations.

To support memory elasticity, the TM maintains an internal vari-
able, size, which tracks the current size of verified memory. To in-
crease the size of memory, the TM exposes a NewVCell() method.
The implementation of this method within the TM initializes a new
vcell with address size and a predefined initial state (for VMKV ,
the initial state, e.g., would set the status bit to invalid). It performs
a write on this vcell to update hws, increments size, and returns
the new vcell.

Memory shrinking is more involved. For shrinking to be usable in
practice, we need the ability to compact the valid vcells to locations
with smaller addresses. To enable such compacting, the TM exposes
a Move(destvcell , srcvcell) with expected semantics. To shrink
memory, the amount of memory size reduction is specified at the
beginning of a deferred verification scan. This information is used
during the scan to ensure that the hnew

ws (Figure 4) the write-set hash
for the next epoch correctly reflects the reduced number of vcells.
Finally, DefVerifyEnd() updates size to the new (reduced) value.

B. ADDITIONAL EXPERIMENTS

B.1 Exp 5: Latency, Vary UM Cores
Figure 16 shows the median and 90% quantile latency of Con-

certo(FPGA) for our four workloads. The main takeaway here is that
the latency incurred by our current configuration of Concerto(FPGA)
is significant, in the order of milliseconds. This is primarily because
of our aggressive batching both for TM roundtrips and for logging.
In other words, our current Concerto configuration is optimized for
throughput at the expense of latency. In the cloud context though,
high in-server latencies might be masked by the network latencies,
and therefore acceptable. That said, optimizing throughput over
latency is not central to our design, and we could expose different
threshold/latency characteristics by tweaking our batching thresh-
olds. A second related observation is that the latency is highest for
the read-only workload C. This happens because this is the workload
with the highest throughput and therefore able to batch operations
the most.
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Figure 12: Sequence of DefVerifyNext(), DefVerifyEnd() calls. DVN (0) is shorthand for DefVerifyNext() for vcell 0, and DVE , a shorthand for
DefVerifyEnd(). M denotes the size of verified memory.

𝑤(0,1) 𝑤(1,2) 𝑟(1,2) 𝑤(1,4) 𝑟(0,1) 𝑤(0,4) 𝑟(0,4) 𝑤(0,9)

0 1

1 2 4

4 9

𝑅𝑆 = { 1,2 , 0,1 , 0,4 }

𝑊𝑆 = { 0,1 , 1,2 , 𝟏, 𝟒 , 0,4 , (𝟎, 𝟗)}

Operations over time 

𝑟(0,9) 𝑟(1,4)

Verification scan

{ 0,9 , 1,4 }

Figure 13: Read- and write-sets for 2 cells: w(a, v) (resp. r(a, v)) indicates value v was written to (resp. read from) location a. In a read-consistent memory
RS trails WS by exactly two elements. A verification scan adds these elements to RS and makes them equal.
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Figure 14: Reads and writes of a single vcell with address 0 at two verifier
threads. We use the notation (a, 〈p, v, t〉) to denote a vcell with address
a, payload p, vid v, and timestamp t. The read-sets and write-sets (under
hashing) are tracked separately. With read-write consistent memory, we
have RS(0) ∪ RS(1) = WS(0) ∪WS(1). Under hashing, the union
operation becomes an ⊕.

C. DURABILITY AND RECOVERY
To elaborate the durability guarantees provided by Concerto, we

distinguish anticipatable failures from adversary induced failures.
Anticipatable failures refer to failures such as power outages, disk
and memory corruption. Traditional transactional systems model
the effect of such failures to recover automatically using redundancy
and logging. Concerto uses similar techniques, and a successful
response from Concerto for a key-value operation means that the
effect of the operation is durable and recoverable from anticipatable
failures. (Our current prototype handles memory errors, but we can
use standard redundancy techniques to handle disk errors.)

Since the adversary has full control over the Concerto server
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Figure 15: Design of the FPGA TM

machine, adversarial errors can be arbitrary. Durability guarantees
of any transactional system do not hold in the presence of such errors.
For example, a rogue administrator could simply delete the database
and the log, rendering it unrecoverable to a state consistent with a
previous committed transaction. Recovery from adversarial errors
cannot therefore be automatic and requires out-of-band mechanisms.

Recovery Guarantees: For all failures, Concerto exposes a single
method recover() to recover the system to a functional state. Dur-
ing normal operations, Concerto logs various state changes, and
recovery uses the information in the log to recover the system to
the most recent consistent state possible. For transient failures in
an untampered system, such a recovery is complete, i.e., no updates
are lost, and normal processing resumes at the end of recovery. If
there is tampering or non-recoverable hardware failure, recovery
is partial meaning the system is in a consistent but historical state,
and the system returns information (protected by a TM MAC) that
can be used to determine lost updates. We emphasize that an adver-
sary cannot induce the system to rollback changes without being
detected.

Logging: During normal processing, Concerto stores changes to the
UM and TM state in a log maintained in untrusted persistent storage.
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The log contains sufficient information so that during recovery we
can restore the UM and TM state to the current or any historical
version. We use standard techniques to log UM state changes; we
log just the VMKV changes (and therefore raw key-value data
changes) and the key index is rebuilt after recovery.

Logging TM state changes involves additional details to prevent
log tampering attacks. We assume the TM has access to a secret
symmetric key SKTM . Such a key can be built into the trusted
platform [39] or derived from other primitives such as PKI identity
provided by the platform. After processing a batch of VerifyOp()
calls, a verifier thread generates a log record that contains its latest
hashes and TC counter value. It encrypts and MACs the record
using SKTM before returning it to UM. The UM stores the log
record as part of the log. We note that there is one TM log record
per batch, not per operation.

To ensure consistency between log records of verifier threads,
the TM internally maintains a log sequence number (LSN) counter.
When a verifier generates a new log record, it increments the LSN
counter, and the current value of the counter is stored in the log
record. While this counter is shared by all verifier threads, it is
updated once per batch of operations so synchronizing access to the
counter does not add much overhead.

The LSN counter is stored in nonvolatile storage within the TM.
We note that a small amount of nonvolatile storage is available in
many trusted platforms [24, 39]; TPM chips if available can also be
used for this purpose using techniques presented in [34].

Recovery: Recovery is a series of attempts to get the system to a
consistent state using the information in the log. In each attempt,
we logically replay a prefix of the log to restore the UM and the TM
to a historical version, and we check if the UM state is consistent
with the TM hashes by running a deferred memory verification scan.
If the verification succeeds, the TM determines whether or not the
recovery was complete by comparing the internal LSN counter with
the LSN of the TM log record visited during recovery.

For correctness, we note that the adversary cannot tamper with the
TM log records due to the MAC protecting them. The TM checks
during recovery that these records are visited in LSN order. This
implies that the resulting TM state is a legitimate historical one. The
restored UM state may or may not be legitimate, but this aspect is
checked by the deferred verification step.

We have omitted in our description details relating to recovery
performance such as the use of checkpointing to avoid replaying
the entire log. These details are fairly standard and not specific to
Concerto.

D. RELATED WORK
There is a rich body of prior work [3, 4, 8, 13, 22, 27, 30, 31, 36,

40] on integrity verification for outsourced databases. It is useful
to distinguish between the general setting where a collection of
identical clients use and update the database from the publication
setting where a single data owner publishes data, and the other
clients query it.

Merkle Trees: Most prior systems rely on Merkle trees [25]. One
important design choice in these systems is the location where the
hash of the Merkle tree root is stored: It could be stored in an
in-server trusted module [3, 4] or at a client [8, 13, 22, 36]. The
latter approach is often used in the data publication setting with
the data owner storing the root hash. To securely propagate the
root hash to other clients, the data owner typically signs the root
hash and stores the hash and its signature at the untrusted database
server. The other clients fetch the root hash from the server, which
is unforgeable due to the signature. This approach, however, makes
the problem of ensuring freshness of query results in presence of
database updates challenging. To invalidate an out-of-date hash and
its signature, these systems rely on techniques similar to certificate
revocation [26]. The freshness guarantees resulting from these
techniques is approximate (e.g., no tuple is stale by more than δ
hours or days) which is acceptable for data publication, but weaker
than the serialization-based guarantee of Concerto.

One notable example of a client-based system that does provide
strong serialization guarantees is [13]. Here, both data owner and
other clients can introduce updates. The untrusted server computes
the new root hash after an update; the sequence of root hashes and
updates that produce them is logged at the data owner. The server
could introduce an integrity violation and log an incorrect root hash
which is not immediately detected by the data owner. The verifica-
tion is on-demand, and the fidelity of any suspicious operation can
be verified subsequently from the root hashes immediately before
and after the operation from the data owner log. The verification
of one operation does not verify other (previous) operations so
integrity violations could go undetected unless all operations are
verified (which is expensive). In Concerto, in contrast, verification is
not tied to a particular operation and checks the integrity of all prior
operations. (Other than the innovative logging protocol, the actual
data processing uses regular Merkle trees similar to our baseline
implementation in Section 7.)

Signature Aggregation: Beyond Merkle trees, a second approach
used in prior systems relies on digital signatures [30, 29, 32]. In-
formally, database tuples are signed with the private key of the data
owner. The unforgeability of the signatures helps verify the authen-
ticity of the tuples. (An interesting optimization available for these
systems is signature aggregation, where signatures for individual
tuples can be aggregated to a single signature reducing verification
costs.) For completeness, these systems rely on a clever signature
generation scheme that covers adjacent tuples in a sort order. Unlike
Merkle tree, this approach does not have a single updatable digest,
so ensuring freshness is challenging. One interesting approach to
addressing this issue is presented in [32], where the data owner
periodically publishes signed bitmaps of updated tuples using which
clients can check for stale records.

General Queries: While Merkle trees and signature-based ap-
proaches can be used to verify SPJ queries, the size of proofs they
generate could be large compared to result size, which translates to
high verification cost. Papamanthou et al. [33] propose techniques
for optimal verification of operations over dynamic sets; these tech-
niques are optimal in the sense that their proofs and verification
costs are linear in the query and result size. These ideas are general-



ized in IntegriDB [40], a system that supports efficient verification
of SPJ queries with some aggregations.

General Systems: Beyond database systems, our work is also re-
lated to file systems [23, 11, 39, 12] and web applications [15]
providing integrity verification. These systems ultimately rely on
Merkle trees to provide integrity for the underlying state.

Redactable Signatures: Kundu and Bertino [18] introduce an in-
teresting variant of integrity verification in data publication setting:
The outsourced data is tree-structured such as an XML document
and each client is authorized to view a part of the data such as a sub-
tree. The goal is to design a verification scheme such that the client
can verify the subtree she retrieves is authentic; at the same time
the client should not learn anything about data not in the subtree
or even that the subtree is redacted from a larger tree. Brzuska et
al. [6] formalize the notion of redactable signatures and Kundu et
al. [17] extend these techniques to graph-structured data.
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