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플래시 메모리 모델 상에서의 트리 인덱스 
구조들에 대한 비교 및 분석

(Analysis and Comparison of Tree Indexing Structures in 

Flash Memory Models)
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요 약 현재 플래시 메모리 장치들은 다양한 곳에 이용되고 있으며 기존의 외부 저장 장치들을 빠르

게 대체하고 있다. 플래시 메모리 하에서 자료들을 효과적으로 저장하기 위해서는 이에 적합한 파일 시스

템과 인덱스 구조를 사용할 필요가 있으며 이에 대해 많은 연구가 이루어져 왔다. 하지만 플래시 메모리 

모델에 대한 이론적인 기반의 부족으로 인해 이 구조들의 성능을 서로 비교하기 힘들었으며 기존의 외부 

메모리 모델은 플래시 메모리의 특징들을 반영하는 데 있어 어려움이 있어 왔다. 이 논문에서 우리는 플

래시 메모리에 적합하게 제안 된 다양한 인덱스 구조들에 대해 알아보고 최근에 제안된 플래시 메모리 모

델을 사용하여 이들의 성능을 분석한다.

키워드 : 플래시 메모리, B
+
-트리, 트리 인덱스, I/O 모델, 플래시 메모리 모델

Abstract Flash memory devices are becoming ubiquitous and indispensable storage devices, 

partly even replacing the traditional hard-disks. To store data efficiently on these devices, it is 

necessary to adapt the existing file systems and indexing structures to work well on the flash memory, 

and a significant amount of research in this field has been devoted to designing such structures. But 

it is hard to compare these structures owing to the lack of any theoretical memory models for flash 

memory and since the existing external memory models fail to capture the full potential of flash-based 

storage devices. In this paper we study various index structures that have been shown to perform well 

on flash memory, and analyze them in the recently proposed flash memory models.

Key words : Flash memory, B
+
-tree, tree indexes, I/O model, flash memory model

1. Introduction

Flash memory is non-volatile computer memory 

which can be erased and programmed. Flash memory 

devices have received increasing attention amongst 

the storage community because they are lighter, 

provide greater throughput and greater shock resist-

ance while consuming lesser power as compared to 

magnetic disks. Flash memory has been put to use 

in low power devices and it is believed that they 

will be used for commercial large-scale usage either 

alongside or by replacing traditional disk-based 

storage. We consider the problem of storing indexing 

data structures on a flash based device where the 

index contains pointers to the data records which 

are stored on a different secondary disk. The disk- 

based B+-tree data structure proposed by Bayer et 

al. [1] is a popular index structure because of its 

scalability and efficiency. With the rapid growth of 

flash memory capacity, the implementation of index 
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structures originally designed for disk-based external 

memory can become a bottleneck. Despite significant 

work in the field of flash-specific data structures, 

there is a lack of a central model to theoretically 

analyze the performance of the several proposed 

structures. We discuss various B
+
-tree based data 

structures proposed for storage and retrieval func-

tionality and analyze them using cost models 

proposed recently. By means of this study, we 

intend to develop a framework to compare various 

secondary indexing structures.

Flash memory suffers from the issue of asym-

metric read and write speeds unlike magnetic disks 

but most of the existing applications assume similar 

read and write speeds. As an example for database 

systems, a write-intensive workload will exhibit 

poor performance on a flash disk if it uses tradi-

tional disk-based data structures. This property has 

led to investigations into designing flash specific 

data structures which perform efficiently on flash 

memory devices. This work is motivated from the 

lack of a central model or assumptions across the 

data-structures designed for flash memory and we 

analyze the operation times of the various data 

structures to distinguish between various indexing 

structures.

The rest of the paper is organized as follows. In 

the following subsections we discuss details about 

flash memory and the models proposed to evaluate 

the performance of the various indexing structures 

proposed along with the notation used. In Section 

1.3, we introduce the B
+
-tree which forms the basis 

of most flash-specific indexing data structures and 

then analyze various tree based indexing structures 

in Section 2 using a common flash memory cost 

model. Other approaches towards solving the problem 

of storing indexing structures on flash disk are 

mentioned in Section 3. We conclude by providing 

a comparative analysis of the indexing structures in 

Section 4.

1.1 Two-level I/O Model

Aggarwal and Vitter [2] proposed a standard 

two-level I/O model to analyze the performance of 

an algorithm. An I/O is the operation of reading 

(or writing) a block from (or into) external memory. 

Computation can only be performed on elements in 

internal memory. The measures of performance are 

the number of I/Os used to solve a problem and 

the amount of space (disk blocks) used. The model 

consists of a CPU, a fast internal memory of size 

M and a slow external memory of infinite size. The 

CPU can only access data stored in the internal 

memory, and data is transferred between internal 

and external memories in chunks of size B where 2 

≤ B ≤M/2. The time complexity of an algorithm 

is measured in terms of these memory transfers 

called I/Os; the CPU computation time is assumed 

to be free.

1.2 Flash Memory

Flash memory is becoming the preferred form of 

storage for a wide range of devices. Flash memory 

scores over traditional magnetic disk-based techno-

logies owing to the following main reasons:

∙Reduced Latency. Since flash does not use any 

mechanical parts but electrically accesses the 

location containing data, the latency is orders of 

magnitude lesser than that of magnetic disk.

∙Increased Robustness. Due to absence of mecha-

nical parts, flash disks are more shock-resistant.

∙Increased Throughput. Flash disks enjoy greater 

throughput than magnetic disks.

Since flash storage is non-volatile and relatively 

inexpensive, it is used in devices like mobile phones 

and hand-helds to store the data permanently. Due 

to its low energy consumption, high densities and 

low cost (compared to the cost of RAM), flash 

memory is commonly used in sensor networks and 

embedded systems. Flash memory is also becoming 

a popular component of large scale storage devices 

by replacing the traditional hard disks. Compared to 

magnetic disks, flash memory exhibits some unique 

characteristics as described below:

Asymmetric read and write speeds. The time taken 

to read and write to a location in flash memory is 

different owing to the underlying hardware structure. 

A write is performed in flash memory by injecting 

charge into a cell and waiting for it to reach a stable 

status. A read only reads the current status of a cell 

without changing it. Due to this read-write bias, the 

use of traditional disk-based data structures (which 

assume similar read-write time) on flash memory 

yields sub-optimal results.
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∙Erase before write. Any location in a flash memory 

cannot be written to independently owing to the 

existence of Erase Units as described below.

∙Out-of-place update. To modify a value, the entire 

page has to be read and written to a new page 

along with the new value while the old page is 

invalidated.

∙Weariness. Memory cells in a flash disk can be 

written only a limited number of times after which 

they wear out and become unreliable. This number 

lies between 10,000 and 1,000,000 [3].

∙Garbage collection. Since updating a value requires 

making an out-of-place update, many versions of 

same data exist on the disk, which need to be 

collected and cleared. This frequent erase proce-

dure also has an adverse effect on the lifetime of 

the flash memory since each Erase Unit can be 

written a limited number of times after which it 

becomes unreliable.

1.2.1 NOR and NAND flash

There are two types of flash memories: NOR and 

NAND. In both types, a write operation can clear 

bits (change value from 1 to 0) efficiently, but the 

only way to set the bits is to erase an entire 

region of memory called an Erase Unit (EU). The 

erase unit is a characteristic of the device and its 

size typically ranges from 16 KB to 128 KB.

∙NOR flash memory: This is the older of the two 

types and provides random access. It can be 

addressed at the byte level and can be used as 

RAM if needed. It is very slow to write and hence, 

normally used as storage for static data such as 

codes. NOR flash memory is more expensive than 

NAND flash since it provides its own address bus 

and thus supports random-access.

∙NAND flash memory: NAND flash memory was 

developed after NOR flash memory and has much 

faster erase times but it is not directly addressable 

at the byte level. It works much like the block 

devices such as hard disks and the flash disk is 

divided into EUs. Each EU consists of several 

pages and a page is the smallest size which can be 

read or written. Typical page size of NAND flash is 

512 bytes, whereas the EU size is around 128 KB.

Flash disks come as raw NAND memory or as 

commercial Solid State Disks (SSDs). The SSDs 

come prepackaged with a Flash Translation Layer 

(FTL) (described in Section 2.3) which distributes 

the erase operations uniformly across the disk to 

prevent early failure.

1.2.2 Flash Memory Models

Flash memory allows many (up to two orders of 

magnitude) more random I/Os per second than the 

traditional hard disks. However, they cannot support 

general in-place updates. When writing, we distin-

guish between changing bits from 1 to 0 and from 0 

to 1. To change a bit from 0 to 1, the device first 

“erases” the entire erase unit containing the given 

bit, i.e., all the bits in the EU are set to 1. However, 

changing a bit from 1 to 0 is done by writing only 

the page containing it, and each page can be 

programmed only a small number of times (typically 

1 to 3 times) before it must be erased again. Erase 

times are relatively high (several milliseconds). 

Reading a bit is performed by reading the whole 

page containing the given bit. Reading and writing 

pages is relatively fast, whereas erasing an EU is 

significantly slower. This difference in read and 

write (erase) times for pages and also the bias in 

erasing and setting bits in a flash device requires a 

different memory model incomparable to other models 

like the I/O model and the RAM model. For these 

reasons, storage management techniques (algorithms 

and data structures) that were designed for other 

memory models are not always appropriate for the 

flash memory devices.

In the past few years, there has been a consider-

able amount of research on trying to characterize 

the flash devices in order to develop theoretical 

models of flash memory and thus to understand the 

possibilities and limitations of these devices, and 

also to develop efficient algorithms for them. These 

theoretical considerations may ultimately influence 

the exact architecture of future flash devices. Ajwani 

et al. [4] proposed the following two computational 

models for analyzing the performance of algorithms 

on flash memories:

∙General flash model. This is similar to the I/O 

model, with the exception that read and write- 

block sizes are different and that they incur 

different costs. It assumes a two-level memory 

hierarchy, with fast internal memory of size M and 
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a slow external flash memory of infinite size. Read 

and write I/Os from and to the flash memory 

occur in blocks of sizes BR and BW respectively. 

The complexity of an algorithm is x + c ･ y, where 

x and y are the number of read and write I/Os 

respectively, and c is a penalty factor for writing. 

Typically, we assume that BR ≤ BW <M, and c≥ 1.

∙Unit-cost flash model. The unit-cost flash model 

is the general flash model augmented with the 

assumption of an equal access time per element for 

reading and writing. In this model, the cost of an 

algorithm performing x read I/Os and y write I/Os 

is given by xBR + yBW, where BR and BW denote 

the read and write-block sizes respectively. This 

simplifies the model considerably, as it becomes 

easier to adapt external-memory results.

In this paper, we analyze the cost of performing 

various operations such as find, insert and delete in 

the different indexing structures by separately coun-

ting the number of read and write I/Os performed 

during the execution of an operation. Once we have 

these values (x and y above), we can obtain the 

performance in either the general-cost or the unit- 

cost model. We assume that BW ≥ BR. Note that 

BR and BW are the parameters in the flash memory 

models (similar to the block-size B in the I/O 

model). These are simply the parameters to the 

theoretical models, and can be set to different values 

in the experiments. Choosing different values for 

these parameters in the practical setting changes 

the performance of an algorithm (data structure) 

implemented on a flash disk. For example, for the 

64 GB HAMA flash disk, one can get optimal 

performance for random reads and random writes 

by setting these values to 128 KB and 16 MB res-

pectively [4].

1.3 B+-tree

A B
+
-tree [5] is a modification of the well- 

known B-tree data structure proposed by Bayer et 

al. [1] which is used to manage databases effi-

ciently. It maintains a collection of records in the 

sorted order of their keys and allows for find, 

insert and delete operations to be performed in time 

proportional to the height of the tree.

Every node in a B
+
-tree consists of multiple key 

and pointer values. Specifically, a node contains d

Figure 1 A B
+
-tree of order 2

key values K1 …  Kd  and d+1 pointer values P1  … 

Pd+1. If i  < j, then Ki < Kj which maintains the key 

values sorted in every node. The order of a B
+
-tree 

is given by the number of keys d  contained in a 

node, though later modifications have employed 

nodes of varying size [6]. Every pointer Pi, where 1

≤ i≤ d - 1 points to the node which contains values 

between Ki  and Ki+1. The pointers P1  and Pd+1  point 

to nodes at the next level which contain values less 

than K1 and greater than Kd+1  respectively. The 

pointers in the leaf nodes point to the data records 

on the disk. A simple B
+
-tree of order 2 is shown in 

Figure 1.

Let us consider a B
+
-tree where each node is of 

size B and the total number of elements in the tree 

is N. The number of elements in a node and hence 

the branching factor at every node is maintained 

between B/2 and  B. Therefore, the height of a 

B+-tree is O(logB N).

1.3.1 Operations

Search. To find a value in the tree, nodes from 

the root to the leaf node are visited while deter-

mining the next node to visit using the pointers. For 

any key K being searched, at every node, the key 

Ki is searched such that Ki ≤ K and the pointer Pi  

is used to visit the next node. The same process 

continues till a leaf-node is reached. The key K is 

searched in the node and if any Ki = K, then Pi-1 

gives the location of the data on the disk, else the 

search fails. To enable faster range queries opera-

tions, the last pointer in the leaf node Pd+1  can be 

used to point to the next leaf node (sibling pointer).

Update. To perform an insert operation, find 

operation is used till we reach the leaf node where 

insertion needs to be performed. If the node is not 

full, the value is inserted at its appropriate location in 

the sorted list of keys. Else, the node is split into 

two and the first value in the second node is pushed 

up to its appropriate position in the parent node. If 

the parent node becomes full, then we perform a



16 정보과학회논문지 : 시스템 및 이론 제 39 권 제 1 호(2012.2)

Table 1 List of symbols used in the text

N Number of records in the indexing tree

M Size of the internal memory

B Size of a node in the indexing tree

BR Size of a read-block in flash

BW Size of a write-block in flash

h Height of the tree

c Cost penalty parameter in the general flash model

BU Size of buffer

k parameter for the LA-tree

r parameter for the FD-tree

t parameter for the BFTL

similar split at the parent, and this propagates 

recursively to the top of the tree till the first non-full 

node is encountered or the root is split.

1.4 Notation

A record  refers to a data item consisting of a key 

value and associated satellite data. A node in a tree 

comprises of (key, pointer) pairs, each such pair is 

referred to as an element. A record on the disk is 

pointed to by the leaf node of the index-tree. The size 

of a record is much larger than an element, which 

stores just the key value from the record. The 

structure is shown in Figure 2 and the list of symbols 

used in the paper is shown in Table 1.

The size BU  of the buffer (when needed) is 

decided according to the requirement of the data 

structure. We use BR to denote the size of a 

read-block. This effectively corresponds to a page, 

which is the smallest unit on NAND flash devices 

which can be read or written. Similarly, BW denotes 

the write-block size of the flash memory model. In 

other words, read and write I/Os from and to the 

flash memory occur in blocks of consecutive data of 

sizes BR  and BW respectively. 

For our description, we assume NAND flash in 

which every available EU is cleared (set to 1) to 

begin with, and writing a page means changing the 

1s selectively to 0s (NAND flash manufacturers

Figure 2 Structure of a B
+
-tree node

typically allow a few bad EU in the disk (which 

are marked as such) since such a flash disk can be 

manufactured cost effectively). Once a page has 

been written, it cannot be rewritten without erasing 

the entire EU which has a huge cost penalty 

associated with it because of large size of EU. A 

page though can be invalidated and its contents 

can be written to a new page in the same or a 

different EU. All pointers using the physical 

address of the previous page (now invalidated) 

need to be changed accordingly.

The size of a page and EU are hardware-de-

pendent while the sizes of a read-block and 

write-block are parameters to the flash memory 

model. We try to answer the following questions 

for the different indexing structures proposed:

∙What should be the size of the node with 

regards to the read-block and write-block sizes?

∙What is the number of read I/Os required to 

perform an operation?

∙What is the number of write I/Os required to 

perform an operation?

We analyze the worst-case complexity of searches 

and calculate the amortized cost for updates. Based 

on the cost of operations, we predict theoretically 

which data structure works well for different condi-

tions.

2 B+-tree and proposed variants for flash 

memory

Various modifications have been proposed to 

B
+
-tree to reduce the number of writes by using 

different techniques such as using a main memory 

buffer to apply a group of updates together and 

varying the size of the node according to the level 

in the tree. We discuss these ideas and provide the 

cost of performing searches, insertions and deletions 

in these data structures.

2.1 B
+
-tree in flash memory

Considering B ≥ BR, we would need B/BR read 

I/Os to read a node. To find the location of the 

record on disk, we will need to read O(h) nodes 

from root till leaf node. Hence, the overall cost is 

O((B/BR) logB N) read I/Os. Since (B/BR) logB N 

is an increasing function in B, therefore to mini-

mize the number of block-reads during search, we 
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Figure 3 Efficient tree layout. Nodes are stored on disk in top-down manner. Dashed area 

represents a write block

need to choose B as small as possible. Thus, we 

choose the node size B (and hence the fanout of 

the tree) to be equal to BR.

Along with key values, a B+-tree node stores 

pointers to child nodes. In the I/O model, we can 

simply update these pointers in place. On a flash 

memory device however, if an insertion is made at 

a node, then the write-block containing that node 

needs to be rewritten to a different location. With-

out loss of generality, we can assume that all the 

nodes in this rewritten block are pointed to by the 

same parent node. Now the pointers in this parent 

node have to be modified appropriately (again, since 

in-place update cannot be done). This procedure 

affects all nodes in the path to the root and all of 

them need to be modified and rewritten. For 

commercial database, the branching factor is high 

(～10,000) and the height is small (～4), but even 

then for every update, writing multiple nodes 

becomes a costly process and requires garbage col-

lection more frequently since it uses up existing 

flash pages faster.

An update to a leaf node requires three phases: 

finding the appropriate leaf node, writing the leaf 

node and updating all nodes from the leaf to the 

root. The first phase requires the find operation 

described above, while the second operation costs 

O(1) write I/Os. The third phase is most costly 

since we need O(h) write I/Os in the path from the 

leaf node to the root. 

This will require O(logBR N) write I/Os, in the 

worst-case when each node on a root-to-leaf path 

resides on a different write-block. Hence, the total 

cost of performing an update operation includes 

O(logBR N) read I/Os and O(logBR N) write I/Os. 

We now describe how to improve the write-com-

plexity of this structure by arranging the nodes 

appropriately in write-blocks.

2.2 Efficient tree layout to improve the write cost

To improve the write cost of the above B-tree 

structure, we first choose B to be equal to BW (instead 

of BR). This improves the write cost for updates to 

O(logBW N) write I/Os, but increases the read cost for 

searches to O((BW/BR) logBW N) read I/Os. To 

improve this to O(logBR N), we implement each node 

of this B-tree (whose size is BW) as a B-tree with B 

equal to BR. Thus by arranging the nodes of the 

B-tree in this layout (as shown in Figure 3), we can 

perform searches by O(logBR N) read I/Os, and 

updates by amortized O(logBW N) write I/Os.

2.3 Flash Translation Layer (FTL)

One basic issue with tree structures on flash 

disk is the cost of update of a single node. Since 

in-place update is not allowed by flash memory, 

updating a page requires one to invalidate that 

page and write the contents (along with modifica-

tions) to a different page altogether. Although this 

looks like a small extra cost, it becomes a basic 

issue for structures which use pointers to physical 

address. Technically, an in-place update can be 
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Figure 4 Lazy Adaptive tree

performed and it would require reading all the 

pages of the EU into memory, resetting the EU to 

all 1’s (which is a costly operation) and then 

writing back the old pages along with the modified 

value. Apart from being expensive, frequently 

erasing an EU for small updates brings down the 

life of the disk and the EU might become unre-

liable after few updates.

Flash Translation Layer (FTL) [7] solves the problem 

of updating multiple nodes for one update by using 

logical addresses instead of physical addresses for 

pointers and maintaining a logical to physical address 

map. This allows any update to write just the target 

node and not all the nodes up to the root node. The 

logical to physical mapping can be stored in two ways:

∙By allocating some EUs on the disk solely to 

maintaining the table which are updated with 

every modification to the table. Although it sounds 

reasonable, the frequency at which EUs will get 

used might lead to weariness.

∙Every physical page contains logical id and the 

actual table is stored in RAM. Whenever flash 

disk is plugged in, this table can be constructed. 

Due to the weariness of the flash disk and the 

large cost associated with erasing an EU, the 

second option sounds more practical since it uses 

faster read operations to construct the table.

FTL enables a wear-leveling policy to be used, 

which distributes erases uniformly across EUs. It 

can also provide a sector based access to the flash 

disk so that the existing magnetic-disk based 

algorithms can be directly implemented on the flash 

disk. When a standard B+-tree is used along with 

FTL, the cost of find operation remains the same, 

i.e., O(logBR N), read I/Os, while updates require 

O(1) write I/Os as against O(logBW N), write I/Os 

for B
+
-tree without FTL.

2.4 Lazy Adaptive tree

The Lazy Adaptive tree proposed by Agrawal et 

al. [8] is a B
+
-tree with flash-resident buffers at 

every k
th
 level from the root. The idea is to avoid 

high update cost of flash memory by grouping 

together update operations in buffers. Whenever 

search or update operation is performed in the tree, 

the optimal online algorithm named ADAPT dyna-

mically determines whether to empty the buffer and 

update the contents of the descendant nodes or 

append the update request to the buffer. The 

ADAPT algorithm estimates benefit of emptying 

buffer using buffer size and buffer scan cost at 

each lookup and if this benefit is larger than the 

cost of emptying the buffer, then the ADAPT 

algorithm empties the buffer at that lookup. We 

assume that the node size of the B+-tree (and 

hence also the fanout of the tree) is equal to BR.

2.4.1 Cost of operations

Our analysis makes a simplifying assumption that 

the effective buffer size BU is same at every level, 
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Figure 5 Update in a μ-tree. The nodes marked with * are the ones updated. The pages are shown 

before and after the update. New nodes are marked with

which is not the case as described by Agrawal et 

al. [8]. We also assume that the ADAPT algorithm 

does not work during a find operation, and the 

algorithm empties the buffer only when the buffer 

is full. We analyze the performance assuming an 

FTL running on top. Without FTL, the performance 

(with our simplified assumptions) is worse than 

that of the standard B+-tree.

To search for given key, we perform normal 

search operation as in a B
+
-tree and at every k

th
 

level we search in the buffer as well. The cost of 

searching all the nodes along a path is O(logBR N) 

and the cost of searching all the buffers along the 

search path is O((BU  / k․BR) logBR N). Hence the 

total number of read I/Os during search is O((1 + 

(BU / k․BR)) logBR N).

To perform an update, we simply add an update 

record to the buffer at the root. If the at any 

internal node gets full, then we flush all the records 

in that buffer to the next lower-level buffers (or to 

the leaves, if there are no buffers below). Since the 

branching factor of each node is Θ(BR), the number 

of next-level buffers is O((BR)
k). Assuming that BU

≤ (BR)
k
 (otherwise, the search cost will be quite 

high), in the worst-case each update in the buffer 

may have to be pushed to a different next-level 

buffer. Thus the cost of flushing the buffer is 

O(BU) write I/Os, apart from the read cost. Thus, 

each update takes O(1) write I/Os to be pushed to 

the next-level buffer, which is k levels below, or in 

other words O(h/k) write I/Os to be pushed from 

the root to a leaf. And the read cost is at most one 

read I/O per level, or O(h) read I/Os overall. 

Therefore the amortized cost of inserting an element 

into the LA-tree is given by O((logBR N)/k) write 

I/Os (assuming that BU is not too large compared 

to BR), and O(logBR N) read I/Os.

2.4.2 Comparison with B+-tree

LA-tree performs better if the number of write 

I/Os to perform an update in LA-tree is smaller 

than that of B
+
-tree, i.e.,

(logBR N)/k < logBW N ⇒ 

log BW  < k log BR ⇒ BW < (BR)
k.

For most practical values of BR  and BW, the 

above inequality holds even for k = 2, and hence 

LA-tree performs better than B+-tree. The above 

analysis does not take into account the read-cost 

(i.e., the number of blocks read) while performing 

an update. The read-cost is more for the LA-tree 

since in addition to searching in the nodes at each 

level, it also has to search in the buffers. Also, for 

the same reason, searches in the LA-tree are 

slower when compared to the B
+
-tree. 

The search and update costs of LA-tree are both 

inversely proportional to the parameter k. Hence, it 

would seem to make sense to choose k as large as 

possible (i.e., equal to the height of the tree), in 

which case, the performance matches that of 

B
+
-tree. But the actual performance of LA-tree is 

better than that of B
+
-tree in practice as the 
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buffers are flushed adaptively during both searches 

and updates, and buffer sizes are also not the same 

for all the nodes.

2.5 μ-tree: minimally updated tree

The minimally updated tree or μ-tree proposed 

by Kang et al. [6] is a balanced tree similar to 

B+-tree, which reduces the number of pages written 

by using varying sizes for nodes depending on 

their distance from the root. It requires a single 

flash write operation to perform an update to the 

tree, if no nodes are split during the update.

A page is occupied by root to begin with, and the 

size occupied by root gets decreased by a factor of 

two for every increase in height of the tree, as 

shown in Figure 6. The size of a node depends on its 

level and height of the tree. Since the nodes have 

lesser size as their height increases, the number of 

children varies as well. The μ-tree is stored on the 

flash disk as follows: Each read-block corresponds to 

a leaf-to-root path in the μ-tree, and has the 

capacity to store all the nodes along this path. The 

nodes are stored in the blocks such that no node is 

stored on more than one block.

To perform a search, we simply follow a 

root-to-leaf path by reading the blocks containing 

the corresponding nodes. To perform an update, we 

first find the leaf x  in which the update has to be 

performed. We then write all nodes on the root- 

to-leaf path to x  on a new block. The previous 

copies of these nodes (along the root-to-leaf path 

to x) are effectively invalidated as they are not 

reachable from the root of the tree anymore.

Since the size of a node decreases exponentially 

as we move from a leaf to the root and all the 

nodes in the path are contained in one read-block, 

log BR is an upper bound on the height of a  μ-

Figure 6 Resizing a node in μ-tree as the height 

increases from 1 to 4

tree. The exact height of a μ-tree is given by the 

following equation [6]:

 log
 


log
   log 

This gives the following upper bound on the 

maximum number of records that can be stored in 

a μ-tree, if we assume that any root-to-leaf path 

fits in a single read-block (using the fact that the 

quantity under the square-root in Equation 1 is 

non-negative):

≤ 
log 

2.5.1 Cost of operations

Search. Searching in a μ-tree requires reading 

the nodes along a root-to-leaf path. Since all these 

might lie in different pages in worst-case, we 

might need O(h) read I/Os in the worst case.

Update. Update in a μ-tree involves O(h) read 

I/Os to perform search and 1 write I/O, since entire 

path is contained in one read-block. The read and 

write costs are essentially same those of the B-tree 

with FTL, although μ-tree does not have the 

overhead of an FTL.

2.6 FD-tree

The FD-tree proposed by Li et al. [9] consist of 

multiple levels, denoted as L0, L1, …, Lh-1. At the 

top level, L0, it has a head tree which is a small 

(i.e., constant height) B+-tree with node size equal 

to the read-block size. Each of the other levels, L1, 

…, Lh-1, is a sorted run of key values stored in 

contiguous pages. Each level of the tree has a 

capacity which is the maximum number of elements 

that can be stored in that level. The ratio of 

capacities between any two adjacent levels is same, 

and is equal to r, for some parameter r.

To support efficient searches, in each level the 

FD-tree stores entries called fences that point to 

the immediate lower level. Given a search key x, 

we call the page at level Li that contains the 

largest key less than or equal to x  as the target 

page at level Li. The fences are chosen in such a 

way that given a search key x, once we find the 

target page at level Li, the fence pointer with 

largest key value less than or equal to x  in that 

page points to the target page at level Li+1.

To search for a given key x, we first search for 



플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석  21

Figure 7 FD-tree [9]

x  in the head tree, and then follow the appropriate 

fence pointers to find the target pages at each 

level, and search in those target pages. To perform 

an insertion, we first insert the element into the 

head tree. If at any time, the number of elements 

in any level Li, for 0≤ i < h-1, exceeds its capacity, 

the FD-tree merges the elements of Li  with the 

elements in the adjacent lower level Li+1 into a 

single sorted run (stored in contiguous pages). Also 

FD-tree deals deletion as a special case of insertion 

by inserting some entry to be deleted (called Filter 

entry) to the head tree. In the merge process, the 

tree uses only sequential writes and random writes 

occur only in head tree. FD-tree performs better 

than original B
+
-tree for update operation in flash 

memories by converting random writes (which are 

typically slow) to sequential writes.

2.6.1 Cost of operations

Let Li denote the capacity of level i, and let r be 

capacity ratio between adjacent levels, i.e., for 0 ≤ 

i≤ h-2, |Li+1| = r․|Li|. If the FD-tree contains N  

keys, then the height h  (i.e., the number of levels) 

of the FD-tree is O(logr N).

Search. The search procedure first searches the 

head tree, which requires O(1) read I/Os, and then 

accesses one read-block at each of the h  levels. 

Thus the search cost is O(logr N) read I/Os.

Update. Li et al. [9] show that the update cost 

of FD-tree is amortized O((r/(f-r)) logr N) sequen-

tial I/Os, where f is the size of the read-block. But 

this cost is in terms of read-blocks. Thus to obtain 

the actual update cost of FD-tree, we need to 

divide this by BW/BR. By choosing r = Θ(BR) and 

such that r ≤ f/2, we get the update cost to be 

amortized O((BR/BW) logBR N) sequential write I/Os.

2.6.2 Comparison with B+-tree

The search of FD-tree is same as the search of 

B+-tree. The update cost of FD-tree is better than 

that of B
+
-tree if

(BR/BW) logBR N < logBW N ⇒ 

BR/log BR  < BW/log BW.

Since the function f(x) = x/log x  is an increasing 

function, for x  > 0, the above inequality is always 

true. Thus the update performance of FD-tree is 

better than that of the B
+
-tree. In addition, the 

FD-tree only uses sequential writes.

3. Alternate techniques

Apart from the B
+
-tree based structures discussed 

in Section 2, several other ideas have been sug-

gested to maintain indexes efficiently on flash disks. 

In this section, we discuss some of these alternate 

techniques.

3.1 In-page logging

In-page logging uses some pages in every EU to 

maintain a log of changes rather than modifying 

and rewriting a node with each update [10]. To 

provide better efficiency, a buffer is maintained in 

main memory which acts as a reservation buffer 

for the updates to be committed to the tree on 

flash disk, and as a cache to enable quicker reads. 

Assuming update locality, i.e., when several updates 

have to be performed on the same page, the 

approach performs well, but in the worst-case 

where every update in buffer causes a change on a 

different page of the EU, the performance is 

comparable to that of standard B
+
-tree.

3.2 BFTL

BFTL is an efficient B-tree layer for flash memory 

storage systems which looks to combine the effi-

ciency of B
+
-tree index structures with the block- 

emulation provided by flash translation layer [11]. A 

layer called BFTL is proposed which manages 

B
+
-tree indexes at the OS level using Flash Trans-
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lation Layer present at the device level. BFTL 

ensures that all updates to the index are not 

instantaneously committed to the disk but are kept 

in a buffer of fixed size, which is flushed out when 

full. The design of BFTL makes it appropriate to be 

used with log-type filesystems. BFTL works over 

FTL and provides the functions at filesystem level 

to create and maintain B
+
-tree index structures. 

B
+
-tree index services requested by the upper-level 

applications are handled and translated from file 

systems to BFTL and then block-device requests 

are sent from BFTL to FTL. Hence, BFTL adds an 

interface in between without requiring any changes 

to be done to FTL, as shown in Figure 8.

BFTL introduces two new components. A Node 

Translation Table  (NTT) is kept in memory to 

store the physical address of all nodes and the data 

units related with it in a sequential list. A reser-

vation buffer is used to store modifications to nodes 

in main memory before they are flushed out and 

applied to flash memory. When nodes are modified, 

deleted or inserted, they are not written directly to 

disk but stored in reservation buffer as dirty 

record. Deletions are handled by adding invalidation 

dirty records to the reservation buffer. A dirty 

record contains the primary key and data to be stored 

on secondary disk.

We use t to denote the upper bound on the 

length of entry for a node in the Node Translation 

Table. The find operation now needs to look through 

every node’s entry in the NTT apart from the node 

itself to find the index units corresponding to 

updates to that node, which are stored on the disk.

Figure 8 Architecture of BFTL

Thus we need O(t) read I/Os for every node 

searched and in worst-case, the cost of find 

operation needs O(t logBR N) read I/Os.

Performing an insert operation involves searching 

for the node and then performing an update which 

is first stored in the reservation buffer as a dirty 

record, and then flushed out to the disk as an 

index unit, taking constant time. When the NTT 

entry for a node gets full, then the index units are 

read and merged together into the node, thus 

updating the current node and all the nodes till the 

root. This happens after t steps on an average and 

involves O(logBR N) write I/Os in the worst-case. 

Therefore the update cost includes O(t logBR N) 

read I/Os and O((1/t) logBR N) write I/Os.

Once the reservation buffer gets full, index units 

are constructed for every dirty record. Multiple 

index units can be stored on one sector as opposed 

to conventionally storing one node per sector. So, 

when the buffer is emptied, index units are created 

which are stored on the disk using FTL using a 

commit policy which is heuristics-based since the 

problem of packing index units on minimum number 

of sectors is NP-hard. The other data is modified 

or written accordingly on the data disk. The address 

of the index units is appended to the corresponding 

entry in the NTT. So, when performing find 

operation, the node is searched and then all the 

sectors in the node’s entry in NTT are checked. 

This makes find costlier due to greater number of 

reads, but BFTL aims to lower the number of 

writes for greater number of reads.

The reservation buffer cannot be huge because it 

is stored in the main memory. BFTL assumes that 

there will be enough space to contain NTT in 

RAM. Since it consumes internal memory in embe-

dded systems, it might not be suitable for usage in 

devices with low internal memory.

3.3 FlashDB

Despite the modifications proposed for B+-tree for 

flash devices, Nath and Kansal [12] claim that the 

performance gain is not the same for different flash 

devices. They make the following observations:

1. Performance gain depends on factors such as 

read-to-write ratio and data pattern of the 

workload.
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2. Gain also depends on the flash device since the 

read/write costs and their ratios differ signifi-

cantly across flash packages. As an example, a 

Compact Flash (CF) card has write-to-read ratio 

of 2, while a mini Secure Digital (SD) card has 

write-to-read ratio of 200.

3. Re-writing to the same (logical) page address is 

slower than writing to a new page address in 

sequential address while the variation is small 

for a read operation.

The chief contributions of FlashDB are:

1. Design of a self-tuning index which dynamically 

adapts its storage structure to workload and 

underlying storage device.

2. A framework to determine the optimal size of 

the index node to minimize the latency and 

energy consumption.

A tree called B
+
-tree(ST) is constructed (where 

ST stands for Self Tuning) in which a node can 

exist in two modes: Log or Disk. Log mode refers 

to the structure similar to BFTL where each 

update to a node is written as a separate node 

entry and to read a node, all its entries are parsed. 

Disk mode refers to storing a node on contiguous 

pages so that reading a node involves sequential 

reads. A node can switch between the two modes 

depending on the workload and the properties of 

the flash-disk. Disk mode is favored for a read- 

intensive workload while Log mode works better 

for a write-intensive workload.

3.4 Other similar approaches

BFTL and FlashDB can reduce the write I/Os in 

flash memory. But these structures use large 

amount of internal memory and have poor search 

time. The MB-tree  (modified B-tree) proposed by 

Roh et al. [13] is an extension of B-tree index 

which reduces not only the overall write I/Os but 

also the internal memory usage and the search 

time. The MB-tree reduces write I/Os by writing 

many entries which belongs to the same leaf node 

at once. Also MB-tree stores entries and logical 

structure information on flash memory to reduce 

the internal memory usage.

Lee et al. [14] proposed a buffer management 

scheme named IBSF  to improve the search time 

and reduce the internal memory usage in BFTL. 

An index buffer is used to store the index units, 

which reflects the modified B-tree node when upda-

ting the records. When the index buffer gets full, 

IBSF collects index units which will be in the 

same B-tree node and stores in one page so it 

does not need node translation table which can be 

an overhead in search time. Also IBSF eliminates 

redundant index units in index buffer to save 

additional write operations in BFTL. Experimentally, 

IBSF has been shown to perform better than BFTL 

in terms of read, write and erase operations.

Xiang et al. [15] proposed a reliable B-tree imple-

mentation named RBFTL, which is a B-tree layer 

system for NAND flash memories which is placed 

between the application layer and the FTL. This 

reduces the loss of records when a system crash 

occurs, which is a problem in BFTL. RBFTL has 

similar structure as IBSF but the index buffer 

keeps a fixed number of index units and uses a 

NOR flash memory to store the backup index units 

before they are written to NAND flash memory. 

This minimizes the loss of data when a system 

crash occurs.

3.5 Lazy Update tree

The Lazy Update tree proposed by On et al. [16] 

uses main memory for two goals. One is for 

caching the recently used nodes as in normal B
+
- 

trees, and the other is for buffering update requests 

into a buffer called lazy-update pool. The lazy- 

update pool contains update requests which are 

grouped by same target nodes. When an update 

operation is performed in the tree, if the lazy- 

update pool is not full, then the request is added to 

the pool. Otherwise, the tree selects one group as 

the victim by some commit policy and commits 

these victims to the nodes. The experimental results 

in [16] show that lazy update method along with a 

well-designed commit policy improves the update 

performance of the traditional B
+
-tree while preser-

ving the query efficiency.

4. Discussion and Conclusions

We discussed the various B
+
-tree based indexing 

data structures which have been designed specifically 

for flash disks. We analyze the cost of performing 

search and update operations in the recently pro-
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Table 2 Complexity of operations in proposed index structures in terms of the number of read and write I/Os. 

The update cost does not include the search cost. h represents the height of the tree

Data Structure Search coast (read I/Os) Update cost (write I/Os) Reference

B+-tree O(logBR  N) O(logBW  N) [5]

B
+
-tree (w/ FTL) O(logBR  N) O(1) [7]

LA-tree (w/ FTL) O((1 + (BU / k･BR)) logBR  N) O((logBR  N)/k) [8]

FD-tree O(logBR  N) O((BR/BW) logBR  N) [9]

μ-tree O(h) O(1) [6]

posed flash memory models. Table 2 summarizes 

the performance of the index structures that we 

have analyzed in terms of the read and write I/Os. 

From this table, one can easily obtain the comple-

xity of the search and update operations in either 

the general-cost model or the unit-cost model. The 

search cost for all the structures is essentially the 

same. The update cost of μ-tree and B+-tree with 

FTL is better than that of the LA-tree and the 

standard B
+
-tree without FTL. Note that the our 

analysis of LA-tree made several simplified assump-

tions, and hence the practical performance of 

LA-tree may be better than that of μ-tree or B+
-tree 

with FTL for some workloads. When (BW/BR) ≥ 

logBR N, the FD-tree outperforms all the other 

structures, as its amortized update cost is less than 

1, and also since it has very few random writes. 

Otherwise, μ-tree gives the best performance, without 

FTL.

References

[ 1 ] R. Bayer and E. McCreight. Organization and 

maintenance of large ordered indices. In Procee-

dings of the 1970 ACM SIGFIDET (now SIGMOD) 

Workshop on Data Description, Access and Con-

trol, pp.107-141, New York, NY, USA, 1970.

[ 2 ] Alok Aggarwal and Jeffrey S. Vitter. The input/ 

output complexity of sorting and related problems. 

Communications of the ACM, 31:1116-1127, Sep. 

1988.

[ 3 ] Eran Gal and Sivan Toledo. Algorithms and data 

structures for flash memories. ACM Computing 

Surveys, 37:138-163, Jun. 2005.

[ 4 ] Deepak Ajwani, Andreas Beckmann, Riko Jacob, 

Ulrich Meyer, and Gabriel Moruz. On computa-

tional models for flash memory devices. In Jan 

Vahrenhold, editor, SEA, volume 5526 of Lecture 

Notes in Computer Science, pp.16-27, Springer, 

2009.

[ 5 ] Douglas Comer. Ubiquitous b-tree. ACM Compu-

ting Surveys, 11:121-137, Jun. 1979.

[ 6 ] Dongwon Kang, Dawoon Jung, Jeong-Uk Kang, 

and Jin-Soo Kim. μ-tree: an ordered index struc-

ture for nand flash memory. In Proceedings of the 

7th ACM & IEEE international conference on 

Embedded software (EMSOFT), pp.144-153, New 

York, NY, USA, 2007.

[ 7 ] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, 

Dong-Ho Lee, Sang-Won Lee, and Ha-Joo Song. 

A survey of flash translation layer. Journal of 

Systems Architecture, 55:332-343, May 2009.

[ 8 ] Devesh Agrawal, Deepak Ganesan, Ramesh Sita-

raman, Yanlei Diao, and Shashi Singh. Lazy 

adaptive tree: an optimized index structure for 

flash devices. Proceedings of the VLDB Endow-

ment, 2:361-372, Aug. 2009.

[ 9 ] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong 

Luo, and Ke Yi. Tree indexing on solid state 

drives. Proceedings of the VLDB Endowment, 

3:1195-1206, Sep. 2010.

[10] Sang-Won Lee and Bongki Moon. Design of 

flash-based dbms: an in-page logging approach. 

In Proceedings of the 2007 ACM SIGMOD Inter-

national Conference on Management of data 

(SIGMOD), pp.55-66, New York, NY, USA, 2007.

[11] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping 

Chang. An efficient b-tree layer implementation 

for flash-memory storage systems. ACM Trans-

actions on Embedded Computing Systems, 6, Jul. 

2007.

[12] Suman Nath and Aman Kansal. Flashdb: dynamic 

self-tuning database for nand flash. In Procee-

dings of the 6th international conference on Infor-

mation processing in sensor networks (IPSN), 

pp.410-419, New York, NY, USA, 2007.

[13] Hongchan Roh, Woo-Cheol Kim, Seung-Woo Kim, 

and Sanghyun Park. A b-tree index extension to 

enhance response time and the life cycle of flash 

memory. Information Sciences, 179(18):3136-3161, 

2009.

[14] Hyun-Seob Lee and Dong-Ho Lee. An efficient 

index buffer management scheme for implemen-

ting a b-tree on nand flash memory. Data Know-

ledge Engineering, 69(9):901-916, 2010.

[15] Xiaoyan Xiang, Lihua Yue, Zhanzhan Liu, and 

PengWei. A reliable b-tree implementation over 

flash memory. In Roger L. Wainwright and 



플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석  25

Hisham Haddad, editors, Proceedings of the 2008 

ACM Symposium on Applied Computing (SAC), 

pp.1487-1491, 2008.

[16] Sai Tung On, Haibo Hu, Yu Li, and Jianliang Xu. 

Lazy-update b+-tree for flash devices. In Pro-

ceedings of the 2009 Tenth International Conference 

on Mobile Data Management: Systems, Services 

and Middleware (MDM), pp.323-328, Washington, 

DC, USA, 2009.

조 승 범

2009년 KAIST 전산학과(학사). 2011년 

KAIST 전산학과(석사). 2011년～서울대

학교 컴퓨터공학부 박사과정. 관심분야는 

데이터 구조, 알고리즘

Vineet Pandey

2011 B.E(Hons.) BITS Pilani, Computer 

Science. since 2011-Member of Tech-

nical Staff, Advanced Technology 

Group, NetApp, Bangalore. Research 

interests: Algorithms, Flash memory, 

Storage systems

Srinivasa Rao, Satti

1995 BTech NIT Warangal, Computer 

Science and Engineering. 1997 MSc 

Institute of Mathematical Sciences, 

Theoretical Computer Science. 2002 

PhD Institute of Mathematical Sciences, 

Theoretical Computer Science. since 

2009～Assistant Professor, Seoul National University, 

School of Computer Science and Engineering. Research 

interests: succinct data structures, text indexing, algo-

rithms for external memories



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


