
12 정보과학회논문지 : 시스템 및 이론 제 39 권 제 1 호(2012.2)

․이 연구는 서울대학교 발전기금에서 지원된 연구비에 의해 연구되었음

†

††

†††

학생회원

학생회원

정 회 원

논문접수

심사완료

:

:

:

:

:

서울대학교 전기컴퓨터공학부

sbcho@theory.snu.ac.kr

BITS Pilani Department of CS

vineetp13@gmail.com

서울대학교 전기컴퓨터공학부 교수

ssrao10@gmail.com

2011년 8월 17일

2011년 10월 31일

CopyrightⒸ2012 한국정보과학회ː개인 목적이나 교육 목적인 경우, 이 저작

물의 전체 또는 일부에 대한 복사본 혹은 디지털 사본의 제작을 허가합니다.

이 때, 사본은 상업적 수단으로 사용할 수 없으며 첫 페이지에 본 문구와 출처

를 반드시 명시해야 합니다. 이 외의 목적으로 복제, 배포, 출판, 전송 등 모든

유형의 사용행위를 하는 경우에 대하여는 사전에 허가를 얻고 비용을 지불해야

합니다.

정보과학회논문지: 시스템 및 이론 제39권 제1호(2012.2)

플래시 메모리 모델 상에서의 트리 인덱스
구조들에 대한 비교 및 분석

(Analysis and Comparison of Tree Indexing Structures in

Flash Memory Models)

조 승 범 † 비니트 판데이 †† 스리니바사 라오 사티 †††

 (SeungBum Jo) (Vineet Pandey) (Srinivasa Rao Satti)

요 약 현재 플래시 메모리 장치들은 다양한 곳에 이용되고 있으며 기존의 외부 저장 장치들을 빠르

게 대체하고 있다. 플래시 메모리 하에서 자료들을 효과적으로 저장하기 위해서는 이에 적합한 파일 시스

템과 인덱스 구조를 사용할 필요가 있으며 이에 대해 많은 연구가 이루어져 왔다. 하지만 플래시 메모리

모델에 대한 이론적인 기반의 부족으로 인해 이 구조들의 성능을 서로 비교하기 힘들었으며 기존의 외부

메모리 모델은 플래시 메모리의 특징들을 반영하는 데 있어 어려움이 있어 왔다. 이 논문에서 우리는 플

래시 메모리에 적합하게 제안 된 다양한 인덱스 구조들에 대해 알아보고 최근에 제안된 플래시 메모리 모

델을 사용하여 이들의 성능을 분석한다.

키워드 : 플래시 메모리, B
+
-트리, 트리 인덱스, I/O 모델, 플래시 메모리 모델

Abstract Flash memory devices are becoming ubiquitous and indispensable storage devices,

partly even replacing the traditional hard-disks. To store data efficiently on these devices, it is

necessary to adapt the existing file systems and indexing structures to work well on the flash memory,

and a significant amount of research in this field has been devoted to designing such structures. But

it is hard to compare these structures owing to the lack of any theoretical memory models for flash

memory and since the existing external memory models fail to capture the full potential of flash-based

storage devices. In this paper we study various index structures that have been shown to perform well

on flash memory, and analyze them in the recently proposed flash memory models.

Key words : Flash memory, B
+
-tree, tree indexes, I/O model, flash memory model

1. Introduction

Flash memory is non-volatile computer memory

which can be erased and programmed. Flash memory

devices have received increasing attention amongst

the storage community because they are lighter,

provide greater throughput and greater shock resist-

ance while consuming lesser power as compared to

magnetic disks. Flash memory has been put to use

in low power devices and it is believed that they

will be used for commercial large-scale usage either

alongside or by replacing traditional disk-based

storage. We consider the problem of storing indexing

data structures on a flash based device where the

index contains pointers to the data records which

are stored on a different secondary disk. The disk-

based B+-tree data structure proposed by Bayer et

al. [1] is a popular index structure because of its

scalability and efficiency. With the rapid growth of

flash memory capacity, the implementation of index

플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석 13

structures originally designed for disk-based external

memory can become a bottleneck. Despite significant

work in the field of flash-specific data structures,

there is a lack of a central model to theoretically

analyze the performance of the several proposed

structures. We discuss various B
+
-tree based data

structures proposed for storage and retrieval func-

tionality and analyze them using cost models

proposed recently. By means of this study, we

intend to develop a framework to compare various

secondary indexing structures.

Flash memory suffers from the issue of asym-

metric read and write speeds unlike magnetic disks

but most of the existing applications assume similar

read and write speeds. As an example for database

systems, a write-intensive workload will exhibit

poor performance on a flash disk if it uses tradi-

tional disk-based data structures. This property has

led to investigations into designing flash specific

data structures which perform efficiently on flash

memory devices. This work is motivated from the

lack of a central model or assumptions across the

data-structures designed for flash memory and we

analyze the operation times of the various data

structures to distinguish between various indexing

structures.

The rest of the paper is organized as follows. In

the following subsections we discuss details about

flash memory and the models proposed to evaluate

the performance of the various indexing structures

proposed along with the notation used. In Section

1.3, we introduce the B
+
-tree which forms the basis

of most flash-specific indexing data structures and

then analyze various tree based indexing structures

in Section 2 using a common flash memory cost

model. Other approaches towards solving the problem

of storing indexing structures on flash disk are

mentioned in Section 3. We conclude by providing

a comparative analysis of the indexing structures in

Section 4.

1.1 Two-level I/O Model

Aggarwal and Vitter [2] proposed a standard

two-level I/O model to analyze the performance of

an algorithm. An I/O is the operation of reading

(or writing) a block from (or into) external memory.

Computation can only be performed on elements in

internal memory. The measures of performance are

the number of I/Os used to solve a problem and

the amount of space (disk blocks) used. The model

consists of a CPU, a fast internal memory of size

M and a slow external memory of infinite size. The

CPU can only access data stored in the internal

memory, and data is transferred between internal

and external memories in chunks of size B where 2

≤ B ≤M/2. The time complexity of an algorithm

is measured in terms of these memory transfers

called I/Os; the CPU computation time is assumed

to be free.

1.2 Flash Memory

Flash memory is becoming the preferred form of

storage for a wide range of devices. Flash memory

scores over traditional magnetic disk-based techno-

logies owing to the following main reasons:

∙Reduced Latency. Since flash does not use any

mechanical parts but electrically accesses the

location containing data, the latency is orders of

magnitude lesser than that of magnetic disk.

∙Increased Robustness. Due to absence of mecha-

nical parts, flash disks are more shock-resistant.

∙Increased Throughput. Flash disks enjoy greater

throughput than magnetic disks.

Since flash storage is non-volatile and relatively

inexpensive, it is used in devices like mobile phones

and hand-helds to store the data permanently. Due

to its low energy consumption, high densities and

low cost (compared to the cost of RAM), flash

memory is commonly used in sensor networks and

embedded systems. Flash memory is also becoming

a popular component of large scale storage devices

by replacing the traditional hard disks. Compared to

magnetic disks, flash memory exhibits some unique

characteristics as described below:

Asymmetric read and write speeds. The time taken

to read and write to a location in flash memory is

different owing to the underlying hardware structure.

A write is performed in flash memory by injecting

charge into a cell and waiting for it to reach a stable

status. A read only reads the current status of a cell

without changing it. Due to this read-write bias, the

use of traditional disk-based data structures (which

assume similar read-write time) on flash memory

yields sub-optimal results.

14 정보과학회논문지 : 시스템 및 이론 제 39 권 제 1 호(2012.2)

∙Erase before write. Any location in a flash memory

cannot be written to independently owing to the

existence of Erase Units as described below.

∙Out-of-place update. To modify a value, the entire

page has to be read and written to a new page

along with the new value while the old page is

invalidated.

∙Weariness. Memory cells in a flash disk can be

written only a limited number of times after which

they wear out and become unreliable. This number

lies between 10,000 and 1,000,000 [3].

∙Garbage collection. Since updating a value requires

making an out-of-place update, many versions of

same data exist on the disk, which need to be

collected and cleared. This frequent erase proce-

dure also has an adverse effect on the lifetime of

the flash memory since each Erase Unit can be

written a limited number of times after which it

becomes unreliable.

1.2.1 NOR and NAND flash

There are two types of flash memories: NOR and

NAND. In both types, a write operation can clear

bits (change value from 1 to 0) efficiently, but the

only way to set the bits is to erase an entire

region of memory called an Erase Unit (EU). The

erase unit is a characteristic of the device and its

size typically ranges from 16 KB to 128 KB.

∙NOR flash memory: This is the older of the two

types and provides random access. It can be

addressed at the byte level and can be used as

RAM if needed. It is very slow to write and hence,

normally used as storage for static data such as

codes. NOR flash memory is more expensive than

NAND flash since it provides its own address bus

and thus supports random-access.

∙NAND flash memory: NAND flash memory was

developed after NOR flash memory and has much

faster erase times but it is not directly addressable

at the byte level. It works much like the block

devices such as hard disks and the flash disk is

divided into EUs. Each EU consists of several

pages and a page is the smallest size which can be

read or written. Typical page size of NAND flash is

512 bytes, whereas the EU size is around 128 KB.

Flash disks come as raw NAND memory or as

commercial Solid State Disks (SSDs). The SSDs

come prepackaged with a Flash Translation Layer

(FTL) (described in Section 2.3) which distributes

the erase operations uniformly across the disk to

prevent early failure.

1.2.2 Flash Memory Models

Flash memory allows many (up to two orders of

magnitude) more random I/Os per second than the

traditional hard disks. However, they cannot support

general in-place updates. When writing, we distin-

guish between changing bits from 1 to 0 and from 0

to 1. To change a bit from 0 to 1, the device first

“erases” the entire erase unit containing the given

bit, i.e., all the bits in the EU are set to 1. However,

changing a bit from 1 to 0 is done by writing only

the page containing it, and each page can be

programmed only a small number of times (typically

1 to 3 times) before it must be erased again. Erase

times are relatively high (several milliseconds).

Reading a bit is performed by reading the whole

page containing the given bit. Reading and writing

pages is relatively fast, whereas erasing an EU is

significantly slower. This difference in read and

write (erase) times for pages and also the bias in

erasing and setting bits in a flash device requires a

different memory model incomparable to other models

like the I/O model and the RAM model. For these

reasons, storage management techniques (algorithms

and data structures) that were designed for other

memory models are not always appropriate for the

flash memory devices.

In the past few years, there has been a consider-

able amount of research on trying to characterize

the flash devices in order to develop theoretical

models of flash memory and thus to understand the

possibilities and limitations of these devices, and

also to develop efficient algorithms for them. These

theoretical considerations may ultimately influence

the exact architecture of future flash devices. Ajwani

et al. [4] proposed the following two computational

models for analyzing the performance of algorithms

on flash memories:

∙General flash model. This is similar to the I/O

model, with the exception that read and write-

block sizes are different and that they incur

different costs. It assumes a two-level memory

hierarchy, with fast internal memory of size M and

플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석 15

a slow external flash memory of infinite size. Read

and write I/Os from and to the flash memory

occur in blocks of sizes BR and BW respectively.

The complexity of an algorithm is x + c ･ y, where

x and y are the number of read and write I/Os

respectively, and c is a penalty factor for writing.

Typically, we assume that BR ≤ BW <M, and c≥ 1.

∙Unit-cost flash model. The unit-cost flash model

is the general flash model augmented with the

assumption of an equal access time per element for

reading and writing. In this model, the cost of an

algorithm performing x read I/Os and y write I/Os

is given by xBR + yBW, where BR and BW denote

the read and write-block sizes respectively. This

simplifies the model considerably, as it becomes

easier to adapt external-memory results.

In this paper, we analyze the cost of performing

various operations such as find, insert and delete in

the different indexing structures by separately coun-

ting the number of read and write I/Os performed

during the execution of an operation. Once we have

these values (x and y above), we can obtain the

performance in either the general-cost or the unit-

cost model. We assume that BW ≥ BR. Note that

BR and BW are the parameters in the flash memory

models (similar to the block-size B in the I/O

model). These are simply the parameters to the

theoretical models, and can be set to different values

in the experiments. Choosing different values for

these parameters in the practical setting changes

the performance of an algorithm (data structure)

implemented on a flash disk. For example, for the

64 GB HAMA flash disk, one can get optimal

performance for random reads and random writes

by setting these values to 128 KB and 16 MB res-

pectively [4].

1.3 B+-tree

A B
+
-tree [5] is a modification of the well-

known B-tree data structure proposed by Bayer et

al. [1] which is used to manage databases effi-

ciently. It maintains a collection of records in the

sorted order of their keys and allows for find,

insert and delete operations to be performed in time

proportional to the height of the tree.

Every node in a B
+
-tree consists of multiple key

and pointer values. Specifically, a node contains d

Figure 1 A B
+
-tree of order 2

key values K1 … Kd and d+1 pointer values P1 …

Pd+1. If i < j, then Ki < Kj which maintains the key

values sorted in every node. The order of a B
+
-tree

is given by the number of keys d contained in a

node, though later modifications have employed

nodes of varying size [6]. Every pointer Pi, where 1

≤ i≤ d - 1 points to the node which contains values

between Ki and Ki+1. The pointers P1 and Pd+1 point

to nodes at the next level which contain values less

than K1 and greater than Kd+1 respectively. The

pointers in the leaf nodes point to the data records

on the disk. A simple B
+
-tree of order 2 is shown in

Figure 1.

Let us consider a B
+
-tree where each node is of

size B and the total number of elements in the tree

is N. The number of elements in a node and hence

the branching factor at every node is maintained

between B/2 and B. Therefore, the height of a

B+-tree is O(logB N).

1.3.1 Operations

Search. To find a value in the tree, nodes from

the root to the leaf node are visited while deter-

mining the next node to visit using the pointers. For

any key K being searched, at every node, the key

Ki is searched such that Ki ≤ K and the pointer Pi

is used to visit the next node. The same process

continues till a leaf-node is reached. The key K is

searched in the node and if any Ki = K, then Pi-1

gives the location of the data on the disk, else the

search fails. To enable faster range queries opera-

tions, the last pointer in the leaf node Pd+1 can be

used to point to the next leaf node (sibling pointer).

Update. To perform an insert operation, find

operation is used till we reach the leaf node where

insertion needs to be performed. If the node is not

full, the value is inserted at its appropriate location in

the sorted list of keys. Else, the node is split into

two and the first value in the second node is pushed

up to its appropriate position in the parent node. If

the parent node becomes full, then we perform a

16 정보과학회논문지 : 시스템 및 이론 제 39 권 제 1 호(2012.2)

Table 1 List of symbols used in the text

N Number of records in the indexing tree

M Size of the internal memory

B Size of a node in the indexing tree

BR Size of a read-block in flash

BW Size of a write-block in flash

h Height of the tree

c Cost penalty parameter in the general flash model

BU Size of buffer

k parameter for the LA-tree

r parameter for the FD-tree

t parameter for the BFTL

similar split at the parent, and this propagates

recursively to the top of the tree till the first non-full

node is encountered or the root is split.

1.4 Notation

A record refers to a data item consisting of a key

value and associated satellite data. A node in a tree

comprises of (key, pointer) pairs, each such pair is

referred to as an element. A record on the disk is

pointed to by the leaf node of the index-tree. The size

of a record is much larger than an element, which

stores just the key value from the record. The

structure is shown in Figure 2 and the list of symbols

used in the paper is shown in Table 1.

The size BU of the buffer (when needed) is

decided according to the requirement of the data

structure. We use BR to denote the size of a

read-block. This effectively corresponds to a page,

which is the smallest unit on NAND flash devices

which can be read or written. Similarly, BW denotes

the write-block size of the flash memory model. In

other words, read and write I/Os from and to the

flash memory occur in blocks of consecutive data of

sizes BR and BW respectively.

For our description, we assume NAND flash in

which every available EU is cleared (set to 1) to

begin with, and writing a page means changing the

1s selectively to 0s (NAND flash manufacturers

Figure 2 Structure of a B
+
-tree node

typically allow a few bad EU in the disk (which

are marked as such) since such a flash disk can be

manufactured cost effectively). Once a page has

been written, it cannot be rewritten without erasing

the entire EU which has a huge cost penalty

associated with it because of large size of EU. A

page though can be invalidated and its contents

can be written to a new page in the same or a

different EU. All pointers using the physical

address of the previous page (now invalidated)

need to be changed accordingly.

The size of a page and EU are hardware-de-

pendent while the sizes of a read-block and

write-block are parameters to the flash memory

model. We try to answer the following questions

for the different indexing structures proposed:

∙What should be the size of the node with

regards to the read-block and write-block sizes?

∙What is the number of read I/Os required to

perform an operation?

∙What is the number of write I/Os required to

perform an operation?

We analyze the worst-case complexity of searches

and calculate the amortized cost for updates. Based

on the cost of operations, we predict theoretically

which data structure works well for different condi-

tions.

2 B+-tree and proposed variants for flash

memory

Various modifications have been proposed to

B
+
-tree to reduce the number of writes by using

different techniques such as using a main memory

buffer to apply a group of updates together and

varying the size of the node according to the level

in the tree. We discuss these ideas and provide the

cost of performing searches, insertions and deletions

in these data structures.

2.1 B
+
-tree in flash memory

Considering B ≥ BR, we would need B/BR read

I/Os to read a node. To find the location of the

record on disk, we will need to read O(h) nodes

from root till leaf node. Hence, the overall cost is

O((B/BR) logB N) read I/Os. Since (B/BR) logB N

is an increasing function in B, therefore to mini-

mize the number of block-reads during search, we

플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석 17

Figure 3 Efficient tree layout. Nodes are stored on disk in top-down manner. Dashed area

represents a write block

need to choose B as small as possible. Thus, we

choose the node size B (and hence the fanout of

the tree) to be equal to BR.

Along with key values, a B+-tree node stores

pointers to child nodes. In the I/O model, we can

simply update these pointers in place. On a flash

memory device however, if an insertion is made at

a node, then the write-block containing that node

needs to be rewritten to a different location. With-

out loss of generality, we can assume that all the

nodes in this rewritten block are pointed to by the

same parent node. Now the pointers in this parent

node have to be modified appropriately (again, since

in-place update cannot be done). This procedure

affects all nodes in the path to the root and all of

them need to be modified and rewritten. For

commercial database, the branching factor is high

(～10,000) and the height is small (～4), but even

then for every update, writing multiple nodes

becomes a costly process and requires garbage col-

lection more frequently since it uses up existing

flash pages faster.

An update to a leaf node requires three phases:

finding the appropriate leaf node, writing the leaf

node and updating all nodes from the leaf to the

root. The first phase requires the find operation

described above, while the second operation costs

O(1) write I/Os. The third phase is most costly

since we need O(h) write I/Os in the path from the

leaf node to the root.

This will require O(logBR N) write I/Os, in the

worst-case when each node on a root-to-leaf path

resides on a different write-block. Hence, the total

cost of performing an update operation includes

O(logBR N) read I/Os and O(logBR N) write I/Os.

We now describe how to improve the write-com-

plexity of this structure by arranging the nodes

appropriately in write-blocks.

2.2 Efficient tree layout to improve the write cost

To improve the write cost of the above B-tree

structure, we first choose B to be equal to BW (instead

of BR). This improves the write cost for updates to

O(logBW N) write I/Os, but increases the read cost for

searches to O((BW/BR) logBW N) read I/Os. To

improve this to O(logBR N), we implement each node

of this B-tree (whose size is BW) as a B-tree with B

equal to BR. Thus by arranging the nodes of the

B-tree in this layout (as shown in Figure 3), we can

perform searches by O(logBR N) read I/Os, and

updates by amortized O(logBW N) write I/Os.

2.3 Flash Translation Layer (FTL)

One basic issue with tree structures on flash

disk is the cost of update of a single node. Since

in-place update is not allowed by flash memory,

updating a page requires one to invalidate that

page and write the contents (along with modifica-

tions) to a different page altogether. Although this

looks like a small extra cost, it becomes a basic

issue for structures which use pointers to physical

address. Technically, an in-place update can be

18 정보과학회논문지 : 시스템 및 이론 제 39 권 제 1 호(2012.2)

Figure 4 Lazy Adaptive tree

performed and it would require reading all the

pages of the EU into memory, resetting the EU to

all 1’s (which is a costly operation) and then

writing back the old pages along with the modified

value. Apart from being expensive, frequently

erasing an EU for small updates brings down the

life of the disk and the EU might become unre-

liable after few updates.

Flash Translation Layer (FTL) [7] solves the problem

of updating multiple nodes for one update by using

logical addresses instead of physical addresses for

pointers and maintaining a logical to physical address

map. This allows any update to write just the target

node and not all the nodes up to the root node. The

logical to physical mapping can be stored in two ways:

∙By allocating some EUs on the disk solely to

maintaining the table which are updated with

every modification to the table. Although it sounds

reasonable, the frequency at which EUs will get

used might lead to weariness.

∙Every physical page contains logical id and the

actual table is stored in RAM. Whenever flash

disk is plugged in, this table can be constructed.

Due to the weariness of the flash disk and the

large cost associated with erasing an EU, the

second option sounds more practical since it uses

faster read operations to construct the table.

FTL enables a wear-leveling policy to be used,

which distributes erases uniformly across EUs. It

can also provide a sector based access to the flash

disk so that the existing magnetic-disk based

algorithms can be directly implemented on the flash

disk. When a standard B+-tree is used along with

FTL, the cost of find operation remains the same,

i.e., O(logBR N), read I/Os, while updates require

O(1) write I/Os as against O(logBW N), write I/Os

for B
+
-tree without FTL.

2.4 Lazy Adaptive tree

The Lazy Adaptive tree proposed by Agrawal et

al. [8] is a B
+
-tree with flash-resident buffers at

every k
th
 level from the root. The idea is to avoid

high update cost of flash memory by grouping

together update operations in buffers. Whenever

search or update operation is performed in the tree,

the optimal online algorithm named ADAPT dyna-

mically determines whether to empty the buffer and

update the contents of the descendant nodes or

append the update request to the buffer. The

ADAPT algorithm estimates benefit of emptying

buffer using buffer size and buffer scan cost at

each lookup and if this benefit is larger than the

cost of emptying the buffer, then the ADAPT

algorithm empties the buffer at that lookup. We

assume that the node size of the B+-tree (and

hence also the fanout of the tree) is equal to BR.

2.4.1 Cost of operations

Our analysis makes a simplifying assumption that

the effective buffer size BU is same at every level,

플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석 19

Figure 5 Update in a μ-tree. The nodes marked with * are the ones updated. The pages are shown

before and after the update. New nodes are marked with

which is not the case as described by Agrawal et

al. [8]. We also assume that the ADAPT algorithm

does not work during a find operation, and the

algorithm empties the buffer only when the buffer

is full. We analyze the performance assuming an

FTL running on top. Without FTL, the performance

(with our simplified assumptions) is worse than

that of the standard B+-tree.

To search for given key, we perform normal

search operation as in a B
+
-tree and at every k

th

level we search in the buffer as well. The cost of

searching all the nodes along a path is O(logBR N)

and the cost of searching all the buffers along the

search path is O((BU / k․BR) logBR N). Hence the

total number of read I/Os during search is O((1 +

(BU / k․BR)) logBR N).

To perform an update, we simply add an update

record to the buffer at the root. If the at any

internal node gets full, then we flush all the records

in that buffer to the next lower-level buffers (or to

the leaves, if there are no buffers below). Since the

branching factor of each node is Θ(BR), the number

of next-level buffers is O((BR)
k). Assuming that BU

≤ (BR)
k
 (otherwise, the search cost will be quite

high), in the worst-case each update in the buffer

may have to be pushed to a different next-level

buffer. Thus the cost of flushing the buffer is

O(BU) write I/Os, apart from the read cost. Thus,

each update takes O(1) write I/Os to be pushed to

the next-level buffer, which is k levels below, or in

other words O(h/k) write I/Os to be pushed from

the root to a leaf. And the read cost is at most one

read I/O per level, or O(h) read I/Os overall.

Therefore the amortized cost of inserting an element

into the LA-tree is given by O((logBR N)/k) write

I/Os (assuming that BU is not too large compared

to BR), and O(logBR N) read I/Os.

2.4.2 Comparison with B+-tree

LA-tree performs better if the number of write

I/Os to perform an update in LA-tree is smaller

than that of B
+
-tree, i.e.,

(logBR N)/k < logBW N ⇒

log BW < k log BR ⇒ BW < (BR)
k.

For most practical values of BR and BW, the

above inequality holds even for k = 2, and hence

LA-tree performs better than B+-tree. The above

analysis does not take into account the read-cost

(i.e., the number of blocks read) while performing

an update. The read-cost is more for the LA-tree

since in addition to searching in the nodes at each

level, it also has to search in the buffers. Also, for

the same reason, searches in the LA-tree are

slower when compared to the B
+
-tree.

The search and update costs of LA-tree are both

inversely proportional to the parameter k. Hence, it

would seem to make sense to choose k as large as

possible (i.e., equal to the height of the tree), in

which case, the performance matches that of

B
+
-tree. But the actual performance of LA-tree is

better than that of B
+
-tree in practice as the

20 정보과학회논문지 : 시스템 및 이론 제 39 권 제 1 호(2012.2)

buffers are flushed adaptively during both searches

and updates, and buffer sizes are also not the same

for all the nodes.

2.5 μ-tree: minimally updated tree

The minimally updated tree or μ-tree proposed

by Kang et al. [6] is a balanced tree similar to

B+-tree, which reduces the number of pages written

by using varying sizes for nodes depending on

their distance from the root. It requires a single

flash write operation to perform an update to the

tree, if no nodes are split during the update.

A page is occupied by root to begin with, and the

size occupied by root gets decreased by a factor of

two for every increase in height of the tree, as

shown in Figure 6. The size of a node depends on its

level and height of the tree. Since the nodes have

lesser size as their height increases, the number of

children varies as well. The μ-tree is stored on the

flash disk as follows: Each read-block corresponds to

a leaf-to-root path in the μ-tree, and has the

capacity to store all the nodes along this path. The

nodes are stored in the blocks such that no node is

stored on more than one block.

To perform a search, we simply follow a

root-to-leaf path by reading the blocks containing

the corresponding nodes. To perform an update, we

first find the leaf x in which the update has to be

performed. We then write all nodes on the root-

to-leaf path to x on a new block. The previous

copies of these nodes (along the root-to-leaf path

to x) are effectively invalidated as they are not

reachable from the root of the tree anymore.

Since the size of a node decreases exponentially

as we move from a leaf to the root and all the

nodes in the path are contained in one read-block,

log BR is an upper bound on the height of a μ-

Figure 6 Resizing a node in μ-tree as the height

increases from 1 to 4

tree. The exact height of a μ-tree is given by the

following equation [6]:

 log
 


log
   log 

This gives the following upper bound on the

maximum number of records that can be stored in

a μ-tree, if we assume that any root-to-leaf path

fits in a single read-block (using the fact that the

quantity under the square-root in Equation 1 is

non-negative):

≤ 
log 

2.5.1 Cost of operations

Search. Searching in a μ-tree requires reading

the nodes along a root-to-leaf path. Since all these

might lie in different pages in worst-case, we

might need O(h) read I/Os in the worst case.

Update. Update in a μ-tree involves O(h) read

I/Os to perform search and 1 write I/O, since entire

path is contained in one read-block. The read and

write costs are essentially same those of the B-tree

with FTL, although μ-tree does not have the

overhead of an FTL.

2.6 FD-tree

The FD-tree proposed by Li et al. [9] consist of

multiple levels, denoted as L0, L1, …, Lh-1. At the

top level, L0, it has a head tree which is a small

(i.e., constant height) B+-tree with node size equal

to the read-block size. Each of the other levels, L1,

…, Lh-1, is a sorted run of key values stored in

contiguous pages. Each level of the tree has a

capacity which is the maximum number of elements

that can be stored in that level. The ratio of

capacities between any two adjacent levels is same,

and is equal to r, for some parameter r.

To support efficient searches, in each level the

FD-tree stores entries called fences that point to

the immediate lower level. Given a search key x,

we call the page at level Li that contains the

largest key less than or equal to x as the target

page at level Li. The fences are chosen in such a

way that given a search key x, once we find the

target page at level Li, the fence pointer with

largest key value less than or equal to x in that

page points to the target page at level Li+1.

To search for a given key x, we first search for

플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석 21

Figure 7 FD-tree [9]

x in the head tree, and then follow the appropriate

fence pointers to find the target pages at each

level, and search in those target pages. To perform

an insertion, we first insert the element into the

head tree. If at any time, the number of elements

in any level Li, for 0≤ i < h-1, exceeds its capacity,

the FD-tree merges the elements of Li with the

elements in the adjacent lower level Li+1 into a

single sorted run (stored in contiguous pages). Also

FD-tree deals deletion as a special case of insertion

by inserting some entry to be deleted (called Filter

entry) to the head tree. In the merge process, the

tree uses only sequential writes and random writes

occur only in head tree. FD-tree performs better

than original B
+
-tree for update operation in flash

memories by converting random writes (which are

typically slow) to sequential writes.

2.6.1 Cost of operations

Let Li denote the capacity of level i, and let r be

capacity ratio between adjacent levels, i.e., for 0 ≤

i≤ h-2, |Li+1| = r․|Li|. If the FD-tree contains N

keys, then the height h (i.e., the number of levels)

of the FD-tree is O(logr N).

Search. The search procedure first searches the

head tree, which requires O(1) read I/Os, and then

accesses one read-block at each of the h levels.

Thus the search cost is O(logr N) read I/Os.

Update. Li et al. [9] show that the update cost

of FD-tree is amortized O((r/(f-r)) logr N) sequen-

tial I/Os, where f is the size of the read-block. But

this cost is in terms of read-blocks. Thus to obtain

the actual update cost of FD-tree, we need to

divide this by BW/BR. By choosing r = Θ(BR) and

such that r ≤ f/2, we get the update cost to be

amortized O((BR/BW) logBR N) sequential write I/Os.

2.6.2 Comparison with B+-tree

The search of FD-tree is same as the search of

B+-tree. The update cost of FD-tree is better than

that of B
+
-tree if

(BR/BW) logBR N < logBW N ⇒

BR/log BR < BW/log BW.

Since the function f(x) = x/log x is an increasing

function, for x > 0, the above inequality is always

true. Thus the update performance of FD-tree is

better than that of the B
+
-tree. In addition, the

FD-tree only uses sequential writes.

3. Alternate techniques

Apart from the B
+
-tree based structures discussed

in Section 2, several other ideas have been sug-

gested to maintain indexes efficiently on flash disks.

In this section, we discuss some of these alternate

techniques.

3.1 In-page logging

In-page logging uses some pages in every EU to

maintain a log of changes rather than modifying

and rewriting a node with each update [10]. To

provide better efficiency, a buffer is maintained in

main memory which acts as a reservation buffer

for the updates to be committed to the tree on

flash disk, and as a cache to enable quicker reads.

Assuming update locality, i.e., when several updates

have to be performed on the same page, the

approach performs well, but in the worst-case

where every update in buffer causes a change on a

different page of the EU, the performance is

comparable to that of standard B
+
-tree.

3.2 BFTL

BFTL is an efficient B-tree layer for flash memory

storage systems which looks to combine the effi-

ciency of B
+
-tree index structures with the block-

emulation provided by flash translation layer [11]. A

layer called BFTL is proposed which manages

B
+
-tree indexes at the OS level using Flash Trans-

22 정보과학회논문지 : 시스템 및 이론 제 39 권 제 1 호(2012.2)

lation Layer present at the device level. BFTL

ensures that all updates to the index are not

instantaneously committed to the disk but are kept

in a buffer of fixed size, which is flushed out when

full. The design of BFTL makes it appropriate to be

used with log-type filesystems. BFTL works over

FTL and provides the functions at filesystem level

to create and maintain B
+
-tree index structures.

B
+
-tree index services requested by the upper-level

applications are handled and translated from file

systems to BFTL and then block-device requests

are sent from BFTL to FTL. Hence, BFTL adds an

interface in between without requiring any changes

to be done to FTL, as shown in Figure 8.

BFTL introduces two new components. A Node

Translation Table (NTT) is kept in memory to

store the physical address of all nodes and the data

units related with it in a sequential list. A reser-

vation buffer is used to store modifications to nodes

in main memory before they are flushed out and

applied to flash memory. When nodes are modified,

deleted or inserted, they are not written directly to

disk but stored in reservation buffer as dirty

record. Deletions are handled by adding invalidation

dirty records to the reservation buffer. A dirty

record contains the primary key and data to be stored

on secondary disk.

We use t to denote the upper bound on the

length of entry for a node in the Node Translation

Table. The find operation now needs to look through

every node’s entry in the NTT apart from the node

itself to find the index units corresponding to

updates to that node, which are stored on the disk.

Figure 8 Architecture of BFTL

Thus we need O(t) read I/Os for every node

searched and in worst-case, the cost of find

operation needs O(t logBR N) read I/Os.

Performing an insert operation involves searching

for the node and then performing an update which

is first stored in the reservation buffer as a dirty

record, and then flushed out to the disk as an

index unit, taking constant time. When the NTT

entry for a node gets full, then the index units are

read and merged together into the node, thus

updating the current node and all the nodes till the

root. This happens after t steps on an average and

involves O(logBR N) write I/Os in the worst-case.

Therefore the update cost includes O(t logBR N)

read I/Os and O((1/t) logBR N) write I/Os.

Once the reservation buffer gets full, index units

are constructed for every dirty record. Multiple

index units can be stored on one sector as opposed

to conventionally storing one node per sector. So,

when the buffer is emptied, index units are created

which are stored on the disk using FTL using a

commit policy which is heuristics-based since the

problem of packing index units on minimum number

of sectors is NP-hard. The other data is modified

or written accordingly on the data disk. The address

of the index units is appended to the corresponding

entry in the NTT. So, when performing find

operation, the node is searched and then all the

sectors in the node’s entry in NTT are checked.

This makes find costlier due to greater number of

reads, but BFTL aims to lower the number of

writes for greater number of reads.

The reservation buffer cannot be huge because it

is stored in the main memory. BFTL assumes that

there will be enough space to contain NTT in

RAM. Since it consumes internal memory in embe-

dded systems, it might not be suitable for usage in

devices with low internal memory.

3.3 FlashDB

Despite the modifications proposed for B+-tree for

flash devices, Nath and Kansal [12] claim that the

performance gain is not the same for different flash

devices. They make the following observations:

1. Performance gain depends on factors such as

read-to-write ratio and data pattern of the

workload.

플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석 23

2. Gain also depends on the flash device since the

read/write costs and their ratios differ signifi-

cantly across flash packages. As an example, a

Compact Flash (CF) card has write-to-read ratio

of 2, while a mini Secure Digital (SD) card has

write-to-read ratio of 200.

3. Re-writing to the same (logical) page address is

slower than writing to a new page address in

sequential address while the variation is small

for a read operation.

The chief contributions of FlashDB are:

1. Design of a self-tuning index which dynamically

adapts its storage structure to workload and

underlying storage device.

2. A framework to determine the optimal size of

the index node to minimize the latency and

energy consumption.

A tree called B
+
-tree(ST) is constructed (where

ST stands for Self Tuning) in which a node can

exist in two modes: Log or Disk. Log mode refers

to the structure similar to BFTL where each

update to a node is written as a separate node

entry and to read a node, all its entries are parsed.

Disk mode refers to storing a node on contiguous

pages so that reading a node involves sequential

reads. A node can switch between the two modes

depending on the workload and the properties of

the flash-disk. Disk mode is favored for a read-

intensive workload while Log mode works better

for a write-intensive workload.

3.4 Other similar approaches

BFTL and FlashDB can reduce the write I/Os in

flash memory. But these structures use large

amount of internal memory and have poor search

time. The MB-tree (modified B-tree) proposed by

Roh et al. [13] is an extension of B-tree index

which reduces not only the overall write I/Os but

also the internal memory usage and the search

time. The MB-tree reduces write I/Os by writing

many entries which belongs to the same leaf node

at once. Also MB-tree stores entries and logical

structure information on flash memory to reduce

the internal memory usage.

Lee et al. [14] proposed a buffer management

scheme named IBSF to improve the search time

and reduce the internal memory usage in BFTL.

An index buffer is used to store the index units,

which reflects the modified B-tree node when upda-

ting the records. When the index buffer gets full,

IBSF collects index units which will be in the

same B-tree node and stores in one page so it

does not need node translation table which can be

an overhead in search time. Also IBSF eliminates

redundant index units in index buffer to save

additional write operations in BFTL. Experimentally,

IBSF has been shown to perform better than BFTL

in terms of read, write and erase operations.

Xiang et al. [15] proposed a reliable B-tree imple-

mentation named RBFTL, which is a B-tree layer

system for NAND flash memories which is placed

between the application layer and the FTL. This

reduces the loss of records when a system crash

occurs, which is a problem in BFTL. RBFTL has

similar structure as IBSF but the index buffer

keeps a fixed number of index units and uses a

NOR flash memory to store the backup index units

before they are written to NAND flash memory.

This minimizes the loss of data when a system

crash occurs.

3.5 Lazy Update tree

The Lazy Update tree proposed by On et al. [16]

uses main memory for two goals. One is for

caching the recently used nodes as in normal B
+
-

trees, and the other is for buffering update requests

into a buffer called lazy-update pool. The lazy-

update pool contains update requests which are

grouped by same target nodes. When an update

operation is performed in the tree, if the lazy-

update pool is not full, then the request is added to

the pool. Otherwise, the tree selects one group as

the victim by some commit policy and commits

these victims to the nodes. The experimental results

in [16] show that lazy update method along with a

well-designed commit policy improves the update

performance of the traditional B
+
-tree while preser-

ving the query efficiency.

4. Discussion and Conclusions

We discussed the various B
+
-tree based indexing

data structures which have been designed specifically

for flash disks. We analyze the cost of performing

search and update operations in the recently pro-

24 정보과학회논문지 : 시스템 및 이론 제 39 권 제 1 호(2012.2)

Table 2 Complexity of operations in proposed index structures in terms of the number of read and write I/Os.

The update cost does not include the search cost. h represents the height of the tree

Data Structure Search coast (read I/Os) Update cost (write I/Os) Reference

B+-tree O(logBR N) O(logBW N) [5]

B
+
-tree (w/ FTL) O(logBR N) O(1) [7]

LA-tree (w/ FTL) O((1 + (BU / k･BR)) logBR N) O((logBR N)/k) [8]

FD-tree O(logBR N) O((BR/BW) logBR N) [9]

μ-tree O(h) O(1) [6]

posed flash memory models. Table 2 summarizes

the performance of the index structures that we

have analyzed in terms of the read and write I/Os.

From this table, one can easily obtain the comple-

xity of the search and update operations in either

the general-cost model or the unit-cost model. The

search cost for all the structures is essentially the

same. The update cost of μ-tree and B+-tree with

FTL is better than that of the LA-tree and the

standard B
+
-tree without FTL. Note that the our

analysis of LA-tree made several simplified assump-

tions, and hence the practical performance of

LA-tree may be better than that of μ-tree or B+
-tree

with FTL for some workloads. When (BW/BR) ≥

logBR N, the FD-tree outperforms all the other

structures, as its amortized update cost is less than

1, and also since it has very few random writes.

Otherwise, μ-tree gives the best performance, without

FTL.

References

[1] R. Bayer and E. McCreight. Organization and

maintenance of large ordered indices. In Procee-

dings of the 1970 ACM SIGFIDET (now SIGMOD)

Workshop on Data Description, Access and Con-

trol, pp.107-141, New York, NY, USA, 1970.

[2] Alok Aggarwal and Jeffrey S. Vitter. The input/

output complexity of sorting and related problems.

Communications of the ACM, 31:1116-1127, Sep.

1988.

[3] Eran Gal and Sivan Toledo. Algorithms and data

structures for flash memories. ACM Computing

Surveys, 37:138-163, Jun. 2005.

[4] Deepak Ajwani, Andreas Beckmann, Riko Jacob,

Ulrich Meyer, and Gabriel Moruz. On computa-

tional models for flash memory devices. In Jan

Vahrenhold, editor, SEA, volume 5526 of Lecture

Notes in Computer Science, pp.16-27, Springer,

2009.

[5] Douglas Comer. Ubiquitous b-tree. ACM Compu-

ting Surveys, 11:121-137, Jun. 1979.

[6] Dongwon Kang, Dawoon Jung, Jeong-Uk Kang,

and Jin-Soo Kim. μ-tree: an ordered index struc-

ture for nand flash memory. In Proceedings of the

7th ACM & IEEE international conference on

Embedded software (EMSOFT), pp.144-153, New

York, NY, USA, 2007.

[7] Tae-Sun Chung, Dong-Joo Park, Sangwon Park,

Dong-Ho Lee, Sang-Won Lee, and Ha-Joo Song.

A survey of flash translation layer. Journal of

Systems Architecture, 55:332-343, May 2009.

[8] Devesh Agrawal, Deepak Ganesan, Ramesh Sita-

raman, Yanlei Diao, and Shashi Singh. Lazy

adaptive tree: an optimized index structure for

flash devices. Proceedings of the VLDB Endow-

ment, 2:361-372, Aug. 2009.

[9] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong

Luo, and Ke Yi. Tree indexing on solid state

drives. Proceedings of the VLDB Endowment,

3:1195-1206, Sep. 2010.

[10] Sang-Won Lee and Bongki Moon. Design of

flash-based dbms: an in-page logging approach.

In Proceedings of the 2007 ACM SIGMOD Inter-

national Conference on Management of data

(SIGMOD), pp.55-66, New York, NY, USA, 2007.

[11] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping

Chang. An efficient b-tree layer implementation

for flash-memory storage systems. ACM Trans-

actions on Embedded Computing Systems, 6, Jul.

2007.

[12] Suman Nath and Aman Kansal. Flashdb: dynamic

self-tuning database for nand flash. In Procee-

dings of the 6th international conference on Infor-

mation processing in sensor networks (IPSN),

pp.410-419, New York, NY, USA, 2007.

[13] Hongchan Roh, Woo-Cheol Kim, Seung-Woo Kim,

and Sanghyun Park. A b-tree index extension to

enhance response time and the life cycle of flash

memory. Information Sciences, 179(18):3136-3161,

2009.

[14] Hyun-Seob Lee and Dong-Ho Lee. An efficient

index buffer management scheme for implemen-

ting a b-tree on nand flash memory. Data Know-

ledge Engineering, 69(9):901-916, 2010.

[15] Xiaoyan Xiang, Lihua Yue, Zhanzhan Liu, and

PengWei. A reliable b-tree implementation over

flash memory. In Roger L. Wainwright and

플래시 메모리 모델 상에서의 트리 인덱스 구조들에 대한 비교 및 분석 25

Hisham Haddad, editors, Proceedings of the 2008

ACM Symposium on Applied Computing (SAC),

pp.1487-1491, 2008.

[16] Sai Tung On, Haibo Hu, Yu Li, and Jianliang Xu.

Lazy-update b+-tree for flash devices. In Pro-

ceedings of the 2009 Tenth International Conference

on Mobile Data Management: Systems, Services

and Middleware (MDM), pp.323-328, Washington,

DC, USA, 2009.

조 승 범

2009년 KAIST 전산학과(학사). 2011년

KAIST 전산학과(석사). 2011년～서울대

학교 컴퓨터공학부 박사과정. 관심분야는

데이터 구조, 알고리즘

Vineet Pandey

2011 B.E(Hons.) BITS Pilani, Computer

Science. since 2011-Member of Tech-

nical Staff, Advanced Technology

Group, NetApp, Bangalore. Research

interests: Algorithms, Flash memory,

Storage systems

Srinivasa Rao, Satti

1995 BTech NIT Warangal, Computer

Science and Engineering. 1997 MSc

Institute of Mathematical Sciences,

Theoretical Computer Science. 2002

PhD Institute of Mathematical Sciences,

Theoretical Computer Science. since

2009～Assistant Professor, Seoul National University,

School of Computer Science and Engineering. Research

interests: succinct data structures, text indexing, algo-

rithms for external memories

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

