Using Active Digital Phenotyping to Quantify Function and Cognition in Amyotrophic Lateral Sclerosis (ALS)

Zoe Scheier¹, Alison P. Clark¹, Mackenzie Keegan¹, Kelley Erb², Evan Remington², Sheena Chew², Roland Brown², Jessey Ouillon¹, Nicole Eklund¹, Stephen Johnson¹, Vineet Pandey³, Krzysztof Z. Gajos³, Anoopum S. Gupta¹, Katherine M. Burke¹, James D. Berry¹ 1) Healey Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. 2) Biogen Inc, Cambridge, MA, USA. 3) Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA

Background

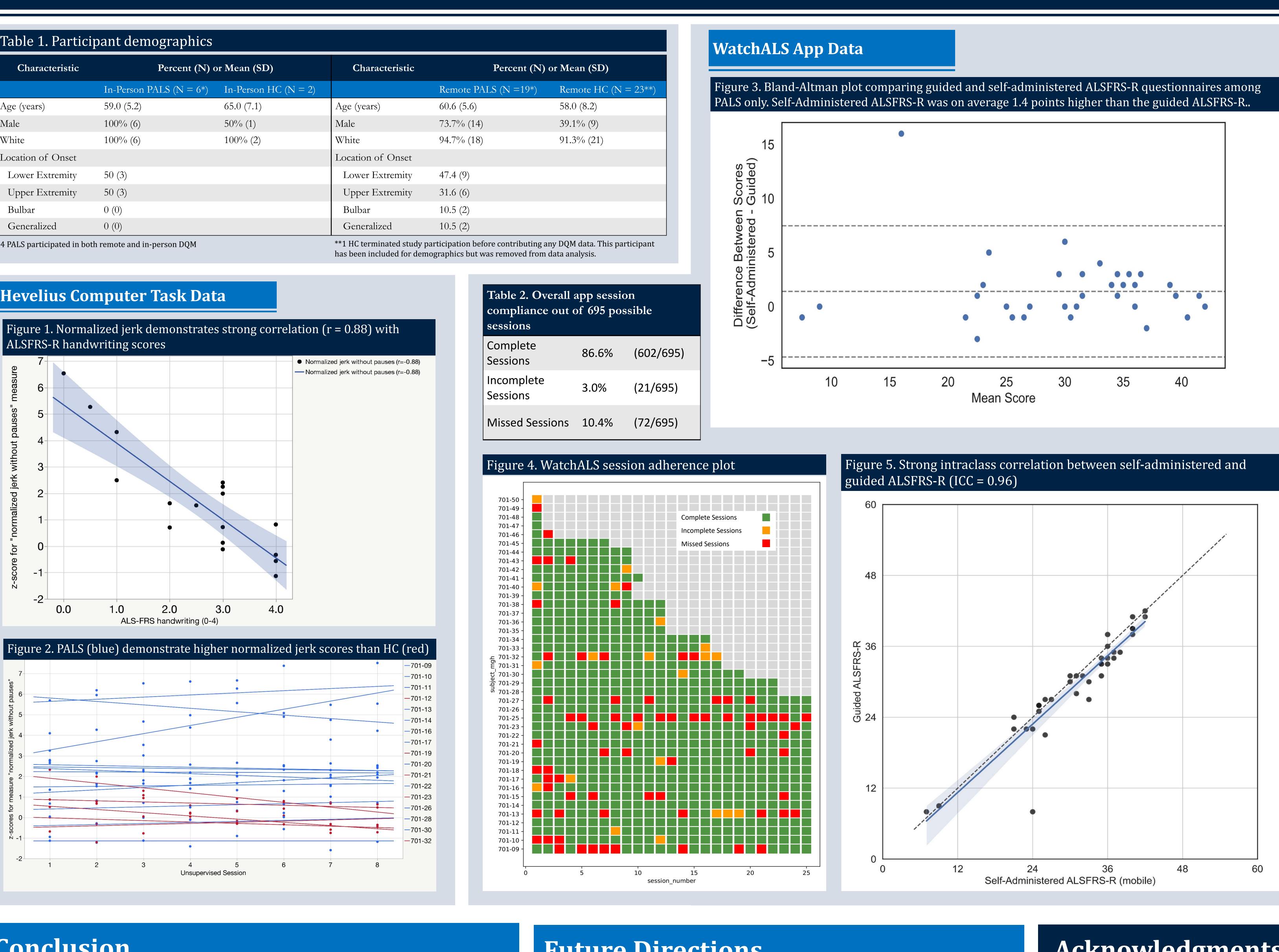
- ALS clinical trials rely on a standard set of outcome measures, including:
 - ALS Functional Rating Scale Revised (ALSFRS-R)
 - Vital Capacity (VC)
 - Handheld Dynamometry (HHD)
- Digital Quantitative Monitoring (DQM) are tasks performed on digital devices
- DQM can obtain more frequent quantitative and granular measurements of function
- Used alongside patient reported outcome measures, DQM can help improve standard ALS outcome measures

Objective

The purpose of this study is to:

- 1. investigate the utility of digital tools for quantifying in-clinic neurological examinations; and
- 2. utilize digital tools to examine patient behavior outside of clinic

for use as biomarkers of neurological change over time in people with ALS.


Methods


- Enrollment Goal: 25 People with ALS (PALS), 25 Healthy Controls (HC)
- Initial Pre-COVID in-person study design (N = 8)
 - Two clinic visits separated by 1 week of daily self-administered tests and continuous passive data collection
 - Clinic visits involved a traditional neurological exam, a digital neurological exam, standard ALS outcome measures, and various cognitive tasks.
- Remote longitudinal redesign (in the setting of COVID, N= 42)
 - Weekly self-administered testing via mobile app
 - Weekly self-administered fine-motor assessment
 - Telemedicine visits at baseline, week 12, week 24 • Staff administered ALSFRS-R, Neurological Fatigue Index – Motor Neuron Disease (NFI-MND), and quality of life scale
- Digital Quantitative Monitoring (DQM)
- Digital Artefacts Mobile Application WatchALS
 - Downloaded on study provided iPhone and Apple Watch
 - Includes symptom questionnaire, self-administered ALSFRS-R and NFI-MND, fine motor, gait, stance, speech, and cognitive tests, and collected continuous passive data
- Hevelius Computer task
 - Self-administered point and click fine motor assessment
 - Completed on participants' personal computer

We present preliminary analysis of Hevelius and WatchALS data for the remote portion of this study.

Results

Characteristic	Percent (N) or Mean (SD)		
	In-Person PALS (N = 6^*)	In-Person HC (N = 2)	
Age (years)	59.0 (5.2)	65.0 (7.1)	Ag
Male	100% (6)	50% (1)	M
White	100% (6)	100% (2)	W
Location of Onset			Lc
Lower Extremity	50 (3)]
Upper Extremity	50 (3)		1
Bulbar	0 (0)]]
Generalized	0 (0)		

Conclusion

- Early WatchALS data suggests compliance is acceptable • A strong correlation between normalized jerk and ALSFRS-R handwriting score indicates potential for Hevelius to reliably assess fine motor impairment
- Self-entry and guided ALSFRS-R show very high correlation, though self-entry scores are just over one point higher, on average.
 - Self-entry is a reasonable means for obtaining ALSFRS-R data
 - Self-entry and guided ALSFRS-R are not interchangeable

Future Directions

- Remote longitudinal data collection is scheduled to complete in March of 2022
- In-person data will be used to assess test-retest validity
- Further data analysis is needed to evaluate the WatchALS app data for
 - Evaluation of fine motor, gait, and cognitive function at baseline
 - Ability to identify changes over time related to ALS disease progression

GENERAL HOSPITAL

VE RI TAS

Healey Center Sean M. Healey & AMG Center for ALS at Mass General

Harvard John A. Paulson **School of Engineering** and Applied Sciences

Acknowledgments

We would like to thank our patients and their families for their kind contribution to research on amyotrophic lateral sclerosis.