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ABSTRACT 
The current approach of relying primarily on institutional experts 
to create knowledge to solve humanity’s problems is insufficient 
to meet the scale, diversity, and novelty of people’s needs. 
Building expertise in people to create knowledge they need 
provides a promising approach. Despite having contextual 
insights, people fail to rapidly generate sound plans—like 
experiments—and correctly implement specific actions—like data 
acquisition and analysis. The limits to progress in multiple 
domains—like science and healthcare—can potentially be 
expanded by building procedural expertise among motivated non-
experts so that they can build on their contextual insights to create 
valid and generalizable knowledge. In this paper, we report on the 
design and evaluation of tools that highlight two ways to realize 
this vision. First, Hevelius is a motor impairment assessment tool 
for patients to conduct neurological assessments online. A rare 
disease community has provided fine-granular data and insights 
from their homes that current in-clinic assessments fail to capture. 
Second, Gut Instinct is a social computing system that supports 
procedural knowledge acquisition for experimentation. A 
fermentation community used Gut Instinct to successfully design 
and run between-subjects experiments to test their intuitions. 
These results suggest exploring ways of producing knowledge that 
are distinct from the dominant model of institutionally-situated 
experts testing their ideas on subjects in a lab or a clinic. More 
constructively, these systems demonstrate how knowledgeable 
and committed people can be aided and amplified by technology 
in creating scientific knowledge.  
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1 INTRODUCTION: LIMITS TO EXPERT 
TOOLS CONSTRAIN KNOWLEDGE 
PRODUCTION 

Our societies lack enough experts; for instance, most countries 
have a severe shortfall of teachers, doctors, and researchers 
[34,38]. At the same time, many citizens possess contextual 
knowledge to make useful contributions. For instance, Dana 
Lewis—a Type-1 Diabetes patient with no professional training in 
medical devices—created her own device to automate insulin 
delivery to keep blood glucose in a target range. She described her 
experience and plans in an empirical paper at the American 
Diabetes Association [11]. Institutional experts have subsequently 
collaborated with her. This example suggests that people do not 
need specific institutional credentials to contribute to science. 
Could this be true for scientific knowledge production in general? 
We do not know; most citizen contributions are limited to 
providing data as research subjects. The lack of greater citizen 
partnership in scientific work is not just an academic concern; 
people’s involvement in science shapes broader public trust in 
scientific knowledge and expertise [4]. In this paper, we argue for 
a future of collaborative knowledge production between 
communities and experts; communities’ motivation and 
resourcefulness provide a starting point. 
 
People’s lived experiences provide them contextual expertise at 
their tasks [16]. Consider bakers trying to make better bread by 
trial and error or patient communities with movement disorders 
trying out different devices to improve their gait. Such folks are 
motivated to improve their situations and possess vital contextual 
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knowledge needed for success with real-world problems. Some of 
their lessons could even provide potentially novel and 
generalizable knowledge. Bakers could inform the science of 
yeast and patients could provide reports that inform the future 
design of tools for mobility. Furthermore, many communities 
already share knowledge among themselves via online fora 
conversations (patientslikeme.com), product reviews, and 
blogposts. However, many such insights stay beyond the realm of 
institutional experts like scientists. While public contributions can 
create generalizable scientific knowledge, even motivated people 
lack the knowhow and the tools to do so. We find this to be 
missed opportunity. 
 
The main contribution of the paper is supporting communities in 
creating valid and generalizable scientific knowledge. In this 
paper, we expand ideas of Limits beyond material and physical 
limits to limits in knowledge production. To support collective 
knowledge production, this paper identifies two problems faced 
by communities: 1) finding ways to work with experts; and 2) 
developing procedural scientific expertise with little effort. This 
paper makes the following contributions: 

1. Two deployed sociotechnical systems to support expert-
community collaboration and identify the social 
preconditions for the success of these systems 

2. Contribution mechanisms and just-in-time procedural 
guidance that mitigate the lack of prior knowledge 

3. Empirical results testing the efficacy of these 
approaches with two distinct communities 

2 From novices to co-pilots: What do we need 
In this section, we discuss the differences in how experts and 
citizens use online platforms to create scientific knowledge, and 
provide ways to deepen contributions by citizens and 
communities.  

2.1 Experts possess the intent and capacity to use 
new technologies 

Institutional science has benefitted immensely from large-scale 
global collaboration. Possessing both the intent and capacity to 
contribute using the internet, experts in many fields have radically 
changed how they perform science. Experts benefit from 
conceptual knowledge, professional training, pre-existing 
organizational structure for collaboration, and direct access to 
resources. For instance, LIGO’s pathbreaking discovery of 
gravitational waves brought together over 100 researchers from 
over 100 institutions across 18 countries (ligo.org/about). 
Scientists increasingly share data and results faster (arxiv.org). 
Large scientific projects, like the Human Genome Project, took to 
agile science by sharing methods, data, and insights to 
collaboratively speed discoveries. Scientists also form global 
collaborations to accelerate research in nascent scientific domains, 
like the Earth Microbiome project (earthmicrobiome.org). Efforts 
to further expand participation in scientific research are bearing 
fruit: Lab in the Wild recruits anyone with an internet connection 

for behavioral studies [29]; All of Us aims to recruit one million 
Americans from all strata of society (allofus.nih.gov). Distributed 
data contributions from people around the world—browsing 
online [10], using activity trackers, and joining scientific 
projects—have enabled valuable insights on topics including 
obesity [2], aesthetic preferences [30], sleep [13], and the human 
microbiome [23]. 

2.2 Communities contribute to science when their 
intent is supported by experts or tools  

When citizens participate in science, it is typically as embedded 
sensors that are aggregated by experts. Public involvement in 
scientific endeavors continues to be largely limited to performing 
tasks just beyond the reach of computers. A classic example is 
Audubon’s Christmas bird count, run since 1900 [3]. Online 
examples include reporting flower blooms in Project Budburst [5]; 
and identifying galaxies from satellite imagery in GalaxyZoo [39]. 
To support motivated communities in performing more complex 
scientific work, we see two approaches: collaborating with 
experts, and developing task-specific expertise. 

Collaborating with experts 
Patient communities are intrinsically motivated to expand on 
existing knowledge for their medical conditions. Many 
communities use online fora to share caregiving information and 
discuss research progress. However, contributing to scientific 
research requires greater commitment and knowhow. 
Collaborating with experts provides one way for communities to 
contribute. Experts’ knowledge and skills provide the confidence 
that community efforts would not be wasted. Amyotrophic lateral 
sclerosis (ALS) patients designed and ran a study to test the 
efficacy of lithium in reducing their symptoms; this effort was led 
by the PatientsLikeMe platform creators with significant 
experience in study design [35]. The results of this study 
foreshadowed what a NIH-funded study found months later. 
While the PatientsLikeMe experiment provided specific ways for 
ALS community members to contribute, this need not hold for 
other conditions. Rare diseases provide an example.  
 
Rare diseases are disorders that affect fewer than 200,000 people. 
This quantitative distinction in the number of patients leads to 
differences in the availability of experts (both in numbers and 
location), quality of care, general awareness about the condition, 
and current state of research [17]. Rare diseases provide an 
extreme example where patients’ inputs can potentially create 
much-needed knowledge; however, accessing enough patients 
with these conditions is difficult. For example, University of Utah 
Computer Science Professor Matthew Might contributed his own 
resources, tapped his intellectual network, and used his scientific 
prowess to better understand a loved one’s rare disease [24]. In 
the absence of systematic ways of finding and working with 
experts, it falls on individuals to put in exceptional efforts and 
resources to perform complex tasks and to reach out to experts. 
We need a participatory approach where experts and citizens help 
each other answer questions. 
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Expert-community collaboration—such as the PatientsLikeMe 
experiment—requires both social and technical successes. Sharing 
objectives, building trust, and respecting constraints are critical to 
getting started. Both the community and the expert leaders need to 
spend their social capital to ensure that the collaborative effort 
meets all the stakeholders’ objectives. Experts might need 
clinically meaningful data while community members might be 
interested in answering their own questions. Bridging the gap 
between the two might require multiple rounds of conversations 
and iterations to come up with a study design that is not just 
scientifically correct but also community validated. People must 
also trust each other to perform the appropriate steps. Perhaps 
unsurprisingly, the high-risk Lithium experiment on 
PatientsLikeMe was led by the platform creators who had gained 
the trust of the community over multiple years. Finally, the tools 
developed must also respect the constraints of the community and 
the experts. For instance, both patients and experts might be 
strapped for time, so making data collection least burdensome is 
important. Such real-world studies must also provide mechanisms 
for community members to voice their questions or drop out 
without any fear. 

Software to develop task-specific expertise in people 
While expert-community collaboration provides one way to create 
scientific knowledge, it might not always be suitable. Experts are 
in short supply and communities and expert objectives might not 
always align. In the absence of experts, translating motivation to 
action requires developing relevant capacity; this is especially true 
for complex domains. Making a challenge visually salient is an 
effective way to on-board novices. One such domain is 
biochemistry games: finding protein structures in Foldit [8], 
synthesizing RNA molecules in EteRNA [20], and aligning 
nucleotide sequences in Phylo [18]. Foldit introduced 3D game 
for specifying low-energy protein structures via direct 
manipulation [8]. At their best, these citizen science platforms 
yield novel insights. For example, Foldit players discovered 
protein structures that helped scientists understand how the AIDS 
virus reproduces [9]. For tasks that do not have as a crisp visual 
analogue as protein folding, people need better support for 
learning because they lack the years of domain training.  
 
To create knowledge, they need mental scaffolds for organizing 
complex work, domain knowledge to compose and execute the 
steps, and ways to ask for help. Conceptual learning—the primary 
focus of classroom teaching—involves understanding and 
interpreting concepts and the relations between concepts. In 
contrast, procedural learning teaches “action sequences for 
solving problems” [31]. Success with complex creative activities 
requires procedural knowledge (how to do things) in addition to 
conceptual knowledge (facts). While many resources offer facts, 
procedural learning is often ignored. To contribute usefully, 
people need to have a good working model of both the concepts 
and procedures for an activity.  
 

Even with learning resources, complex tasks can be unwieldy to 
manage. Complex tasks can be made manageable by dividing 
them into distinct phases. Touchstone demonstrates the power of a 
semi-automated workflow integrating experiment design, testing, 
and analysis [21]. Crowdsourcing has similarly innovated by 
creating distinct phases: break larger tasks into microtasks; 
algorithms specify the division, dependency, and agglomeration 
activities while workers perform small tasks supported by task-
specific guidelines [19].  
Our research builds on prior work in the Limits community at 
both conceptual and systems levels. Barath and Pargman discuss 
the importance of refactoring society’s complex challenges to 
reduce complexity and involve more people in seamless ways 
[28]. Our work provides such refactoring for experimentation and 
neurological assessment. Penzenstadler et al. described techniques 
that provide guidance to people building a smart garden [27]. We 
use related ideas of procedural guidance to support knowledge 
production. In this paper, we report on the design and evaluation 
of tools that demonstrate ways in which communities can 
collaborate with experts and build expertise. These systems 
demonstrate how knowledgeable and committed people can be 
aided and amplified by technology in creating scientific 
knowledge.  

3 Community-expert collaboration to understand 
a rare disease 

Ataxia-Telangiectasia (A-T) is a rare inherited neurological 
disorder. Typically apparent during childhood, this disorder is 
characterized by impaired coordination of movement, impaired 
immunity, increased cancer risk, and telangiectasias (small 
widened blood vessels). Since it affects multiple body systems, A-
T requires a complex care team comprising multiple specialists 
making it extra daunting for caregivers to both understand and 
manage the condition. 

3.1 Hevelius for remote neurological assessments 
Hevelius is an online motor impairment assessment tool for 
patients with neurological conditions. Hevelius has the potential 
to give experts access to larger quantity and more frequent data to 
better characterize a neurological condition. The patient 
community can contribute to improving scientific knowledge 
about the condition while also potentially answering their own 
questions. Hevelius is not too dissimilar from prior attempts to 
“crowdsource” the collection of scientifically relevant data. While 
helpful, we will argue next that its success critically depends on a 
set of social preconditions that may be difficult to satisfy for many 
disease communities. 

Building trust and identifying objectives take precedence 
Building trust and agreeing on research objectives is critical for 
community and experts to collaborate. This requires open 
communication and at least partly shared mental models about the 
topic---the rare disease. Such trust-building and knowledge 
sharing can be mediated and accelerated by trusted organizations 
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that 1) understand experts’ and community objectives, and 2) 
communicate expectations from both parties to collaboratively 
shape the project. Here we describe the social processes that 
happened for this project to come to fruition.  
 
One member of the research team is a practicing clinician for the 
rare disease. Apart from possessing research expertise about the 
condition, his clinical expertise also brings a deeper understanding 
of patient needs and challenges. Building on this initial trust, it is 
important to understand the broader rare disease community’s 
objectives. We have received immense support in this step from 
the relevant rare disease foundation: Ataxia-Telangiectasia 
Children’s Project. With their experience working with the 
community and multiple experts, Ataxia-Telangiectasia 
Children’s Project provides multiple contributions that are 
difficult to achieve for a small research group. First, they provide 
a consistent point of contact to reach out to the community 
members who already trust them. Second, they have accelerated 
the research cycle by sharing insights on potential plans based on 
their prior experience supporting expert-community research. 
Third, they have actively sought to share resources among 
multiple experts who could potentially collaborate on similar 
topics. In short, Ataxia-Telangiectasia Children’s Project provides 
both access to the community and to other experts; developing 
these relationships ourselves would require substantial effort.  
 
Regarding community objectives, prior work has demonstrated 
that families have complex knowledge, caregiving, and emotional 
needs [17]. Planning to meet some of these objectives both 
improves the research and makes the experience more rewarding 
for the community. Many community members shared their needs 
of better understanding their loved ones’ condition and 
progression more objectively than their daily observations. Based 
on our conversations with them (described later), we realized that 
providing near-term benefits by showing relevant data back to the 

participants in the next tool iteration is both doable and potentially 
valuable for the community. Given this convergence in objectives, 
remote data collection with a clinically validated tool provided 
one concrete way to proceed.  

Tool Implementation 
Hevelius comprises a computer mouse-based tool that provides 
objective, granular, interpretable, multidimensional quantification 
of motor impairment in the dominant arm with just a few minutes 
of use by the patient [14]. Compared to a standard neurological 
exam and existing disease rating scales, Hevelius does not require 
expert judgement to compute the scores and it provides 
assessments that are more granular. The data collected by 
Hevelius has been used to accurately measures disease severity, to 
distinguish between different neurological disorders like ataxia 
and parkinsonism, and to captures disease progression.  
 
In addition to the motor impairment measurement component, 
Hevelius also includes questionnaires for collecting: 1) self-
reports on health and lifestyle; and 2) self-reports about using the 
tool (Figure 1). Throughout this section, we refer to a user with 
neurological disorder as a participant and their family members 
overseeing their tool use as caregivers. We refer to a unique 
{participant, caregiver(s)} set as a family.  
 
Health and lifestyle self-reports ask the family about well-being of 
the participant and significant events since last use of the tool. 
Finally, at the end of tool usage, self-reports about using the tool 
intend to get at the family’s contextual insights integrating their 
experience with the tool and their observations. E.g., one question 
asks families about how participants might be trying to improve 
their performance by altering their body and arm posture.  

3.2 Research questions 

 

Figure 1: With Hevelius, rare disease community members provide researchers weekly well-being self-reports, motor performance 
data, and insights about tool usage. The userflow for Hevelius: A) Caregivers and participants answer questions about lifestyle and 

well-being; B) Participants perform practice tasks to warm up and then click on eight rounds of nine dot clicks; C) Caregivers 
answer questions about the participants’ experience using the tool. 

A B 

C 
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Hevelius was first used for two years in a movement disorders 
clinic, primarily with ataxia and parkinsonism patients. In that 
context, only the motor impairment assessment part of the tool 
was presented to the patients and the use of the tool was 
supervised by a trained technician. The data collected by Hevelius 
were later compared to results of same-day traditional 
neurological assessments and were shown to be predictive of the 
diagnosis and disease severity [14]. 
 
Building on Hevelius’ success in the in-clinic deployment, we 
next collaborated with a particular rare disease community to 
answer two questions: First, does the tool provide reliable data 
across multiple uses (including in-clinic visit)? Second, what 
challenges do people face in using this tool at home over multiple 
weeks? Furthermore, we also wanted to know whether families’ 
contextual insights and feedback help experts develop novel ideas. 
To answer these questions, we ran a 10-week study where people 
were requested to use the tool at home once a week. 

3.3 Study Design 
This study has three components: 1) in-clinic visit, 2) at home 
deployment, and 3) final interview (pending).  
 
In-clinic visit: Caregivers and participants used the tool under the 
observation of the primary author. The in-clinic visit was done at 
an annual rare disease meetup in January 2020. Families traveled 
to the meetup for regular clinical assessment and social events; 
they did not travel to just use the tool. Families were requested to 
bring images of their setup at home to receive feedback on how to 
collect best data (e.g., by reducing distraction near the setup). This 
visit provided three benefits: 1) baseline data for the research team 
to compare at home usage data to, 2) clarifications and corrective 
feedback for the families from the researchers, and 3) calibration 
of the dot size for individual participants; since participants’ 
severity of the condition varies from mild to severe, using the 
same dot size was infeasible: it would be too easy for some and 
too difficult for others. Additionally, one goal of meeting families 

was to build trust between the research team and the participants 
by engaging over the task as well as via conversations in an 
informal setting [32]. Families were provided identical mice to 
take home; they were asked to note down a day and time of the 
week for using the tool once a week starting two weeks after 
settling at home. 
 
At home deployment: Participants were requested to use the tool 
once a week; they received email updates from the community 
coordinator of Ataxia-Telangiectasia Children’s Project, and 
communicated with the research team members via emails and 
text messages if they faced a concern with the tool. Typically, if a 
person did not use the tool for two weeks, the coordinator would 
reach out and enquire if they had any issues. The research team 
did a weekly debrief to look through the results, identify outliers, 
see usage data, and tweak the tool. 
 
Final interview (pending): The study is ongoing and we expect 
to complete the interviews in June.  

3.4 Results 
21 families used the tool at home. 18 started with in the in-clinic 
visit in January 2020; 3 joined later. Families primarily used 
Hevelius on weekends. 
Does the tool provide data that is reliable across multiple use 
including in-clinic visit? Yes. Out of the 32 features tracked by 
Hevelius, researchers found the ones that are reliable across 
weekly usage. (Figure 2A) 
Did people continue using the tool over multiple weeks? Yes. 
(Figure 2B). 

3.5 Discussion 

Why and how did the community use the tool? 
Why did people choose to participate in the at home deployment? 
From our in-clinic conversations with caregivers, three reasons 
emerged: helping the community; answering their own concerns; 
and altruism. Many participants mentioned that the community’s 

     

Figure 2: Results: A) The values in decimal show the correlation between usage during Weekn+1 with Weekn. Examples of 
measures with high and low reliability: movement time (in red) of the pointer was highly correlated across the weeks; movement 

time coefficient of variation (in blue) was not. B) Tool usage varied (🔔=	reminder	sent;	Covid-19=Stay at home orders) 

B 
A 
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Figure 3: Gut Instinct enables anyone to design and run experiments to test their intuitions by integrating conceptual 
learning embedded via short lectures and software-guided procedural learning. Experiment creators can invite anyone to 
review and participate in the experiment. Participants from around the world join experiments, follow instructions, and 

provide data in response to automated data collection reminders.  

support had helped them over the years; such support included 
receiving details about doctors, resources about understanding the 
condition, lifehacks for common concerns, and emotional support. 
Many felt that they were doing their part in helping the 
community by participating in this study. People also shared 
questions that they felt Hevelius data could help answer; e.g. some 
families wanted to check whether an experimental treatment (that 
the participant was enrolled in) was working; some wanted to use 
this data to check and refine their understanding observing the 
participants’ behavior. Finally, many participants also mentioned 
that they just wanted to help out. They felt that there is little 
known about the condition and their contributions could 
potentially create new knowledge that might be useful down the 
road. 
 
Did people use the tool “properly”? While it is not possible to 
exactly know how families used the tool remotely, the quality of 
data being comparable to the in-clinic visit provides some 
evidence that people persisted with using the tool as guided. This 
is important: receiving meaningful data for clinical assessment 
from home implies that this tool could potentially be used with 
other communities. Why did people persist in using the tool? We 
believe our final interview will provide us insights about this 
question. From both who persisted in their usage and those who 
did not, we intend to learn more about their motivation, the 
burden, fatigue, and utility (perceived/real) from continued usage. 

Experts can rapidly test hypotheses and improve the tool with 
task data and caregiver responses 
Switching tasks to test ideas: Running the study remotely on an 
online platform enables the clinicians to switch the task without 
much effort. For instance, researchers wanted to compare two 
types of clicking tasks: one where the dots show up one at a time 
in a “random” (to the user) location and another where the dot 
shows up at diametrically opposite locations around the center of 
a circle. Early analysis verified that participants took less time on 
the second task; this can be potentially useful for those with 
severe impairments who struggle more on the first task. 
Learning about different strategies: During the in-clinic visit, 
many participants demonstrated strategies to better use their 
dominant hand while clicking. Caregivers reported that this was 

true at home: many participants used their non-dominant hand to 
balance themselves on the desk while clicking with their dominant 
hand. Some participants would move closer to the screen when 
clicking on smaller dots. Such contextual insights help researchers 
identify how participants might tailor their behavior while using 
the tool and provide potential confounding factors. 
Providing support to manage a diversity of setups: Browsers 
provide similar “platforms” to maintain consistency. While 
diversity in browsers can be problematic at times, we did not hear 
about any major issues. Some families had old browser versions; 
we worked with them remotely to upgrade their browser by 
sharing instructions. Others had too low screen resolution to see 
all the dots on the screen. By tracking people’s screen resolution, 
we edited our tool to make it work with their home setup.  

Improving Hevelius to meet more objectives  
Provide appropriate feedback to meet community’s needs: Some 
families had earlier mentioned their hope from using the data to 
test their ideas. We are currently in the process of analyzing and 
understanding the results thoroughly ourselves before sharing 
them with the community. There are two reasons: 1) analyzing 
and understanding the data ourselves first makes it easier to take 
the communities’ questions; 2) some data can be potentially 
emotionally burdensome, especially if the participants’ task data 
seems to signal a downwards trend. For such situations, we need 
to carefully present and explain appropriate data elements. 
 
Tackle common slips: The research team provided families with 
identical mice to 1) maintain a consistent input device across 
families and weeks; and 2) reduce friction in getting started. Some 
families reported participants struggling with using the mouse at 
home; most reported being used to tapping on tablets; they had 
difficulty holding the mouse or consistently clicking on the left 
dot. Developing ways for participants to use the mouse more 
comfortably is a relevant task.  
 
Hevelius demonstrates that communities can work with experts to 
generate useful data and insights that can potentially meet both 
groups’ needs. However, access to experts might not be easy for 
everyone and sometimes, not necessary. Gut Instinct demonstrates 
how communities can self-organize to answer their questions. 
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4 Community-run experiments to understand the 
human microbiome 

The human microbiome is the collection of all microbes and their 
genetic components in and on our bodies. As a scientific domain, 
it is nascent, highly contextual (people’s microbiome is unique), 
and personally motivating (altering the microbiome can improve 
health). Each of us hosts a different collection of microbes, and 
this collection is influenced by our environment, diet, health, 
lifestyle, and genetics. A major scientific effort is to better 
characterize and understand this diversity and the causal factors 
for it (hmpdacc.org). This requires engaging diverse participants 
at scale. How can people’s situated knowledge supplement 
institutional science?  

4.1 Gut Instinct: From intuitions to experiments 
Gut Instinct (Figure 3) is a social computing system that provides 
non-experts with just-in-time procedural knowledge necessary for 
designing and conducting rigorous scientific experiments. 
Importantly, Gut Instinct provides mechanisms to support 
productive collaboration during all steps of the experiment design, 
data collection and analysis among a larger community of non-
expert enthusiasts. The system enables people people in designing 
experiments, getting them reviewed, and running them with 
interested participants. GI enables knowledge acquisition in two 
ways: 1) reifying conceptual bits in the software; and 2) providing 
procedural guidance with examples, checklists, and templates. Gut 
Instinct is a general platform but its initial design as geared 
towards improving our understanding of the microbiome.  
 
What makes experimentation difficult? Despite a predetermined 
goal and a formalized process, experimentation requires making 
contextually-appropriate decisions [22]. Good experiment design 
is inherently user centered; designers need awareness of others’ 
interpretation of their ideas and asks. Providing feedback on 
experiment designs requires knowing the success criteria and how 
to help improve. Finally, successfully running an experiment 
requires managing multiple processes such as random assignment, 
anonymizing participant details, and sending instructions and 
reminders for data collection.  

4.2 Design-Review-Run: From Intuitions to 
Investigations 

Gut Instinct creates different roles and supports them with 
procedural guidance. Role-based approaches confer three benefits: 
1) clean delineation of responsibilities improves chances of task 
completion, 2) clustering similar tasks reduces overhead and 
increases consistency; 3) people can decide their contribution 
levels. Gut Instinct requires three roles for each experiment: 
designer, reviewer, and participant. Gut Instinct offers procedural 
support for each: 1) a design workflow provides just-in-time 
training, 2) review with scaffolded questions, and 3) automated 
routines for runtime activities like data collection. Users form and 
refine with the help of contextual support and learning resources 
from the system.    

 

 

Figure 4: Gut Instinct’s design module helps people 
transform intuitions into experiment designs. It walks 

people through 1) converting an intuition to a hypothesis, 
2,3) providing ways to manipulate/measure cause and 

effect, 4-5) specifying control and experimental 
conditions, and (not shown) providing inclusion/exclusion 

criteria. 

 



ICT4S2020, June 21–26, 2020, Bristol, United Kingdom V. Pandey et al. 
 

 

 

Design an Experiment from an Intuition 
People have many, often poorly-framed, hypotheses. Gut 
Instinct’s design workflow helps people harvest and sharpen them 
(Figure 4). Examples illustrate possible choices and how they 
relate; templates provide structure; and embedded videos 
explicate technical issues. Such procedural support can improve 
on-task performance [26]. A final self-review step provides an 
overview of the experiment. The design workflow does not 
mandate double-blindness or the use of placebo; designers can 
choose to specify these details.  

Review the Design via Feedback from Others 
Gut Instinct requires at least two reviews before an experiment 
can be run. The designer invites reviewers: an online community 
member, a teacher, or anyone else who can provide useful 
feedback. Upon receiving reviews, the designer edits their 
experiment to address any issues. For research purposes, Gut 
Instinct logs version changes. Reviewers provide both binary 
assessment and written responses to specific questions (Figure 5). 
These questions cover structure (e.g., accounting for confounds), 
pragmatics (e.g., measuring the real-world cause/effect), and 
participant experience (e.g., data reminder time). Reviewers are 
ineligible to be participants in the same experiment. Similarly, 
creators may not review their own experiment.    

Run an Experiment using Procedural Support 
To launch an experiment, its designer shares a unique URL with 
potential participants. Gut Instinct automatically manages four 
activities to reduce bias and workload:  
1. Randomized placement of people into conditions [22]. 
2. Maintain a per-experiment participant map ([usernames] à 
[exp_id]) for anonymity 
3. Collect and clean data (sending data collection messages and 
reminders at time-zone appropriate times, parsing the responses, 
updating participant and experimenter views).  
4. Prompt experimenters to perform tasks when conditions are met 
(e.g., setting the start date when enough participants have joined 
or reminding participants with missing data). 
 

Participation comprises following instructions (e.g., drink 
kombucha) and providing self-report responses to platform 
queries (Figure 6). Self-reports provide the primary data 
collection mechanism. Participants can optionally answer follow-
up questions that capture contextual insights (e.g. changes in daily 
lifestyle due to travel). Gut Instinct presents participant data to 

 

 

Figure 6: 1) Participants can view a list of experiments. 
When they elect to join one, they 2) answer 

inclusion/exclusion criteria, 3) consent to following the 
provided steps, and 4) receive instructions. Participants 
receive daily, condition-specific requests, and respond 

with data and/or clarifying questions.  

 

 

Figure 5: Reviewers walk through an experiment 
providing binary rubric assessments. A No response 

prompts reviewers to provide concerns and suggestions. 
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experimenters using participant ID rather than real name or 
username. When an experiment ends, Gut Instinct sends a 
summary of results to participants. Participants can anonymously 
discuss experiments at the end, so the experimenter and other 
users on the platform can learn from their feedback. The 
experimenter’s dashboard provides a summary of their 
experiment’s progress and supports lightweight tasks to improve 
the quality of data collected. The dashboard lists tasks: answer 
clarifying questions, remind/thank participants, or look at trends 
in data. Experiments have a minimum participation count; there is 
no upper limit to the number of participants. People who sign up 
after a cohort begins are added to a waitlist. 
 
The Gut Instinct web application uses the Meteor (meteor.com) 
framework for synchronization, Jade for the front end (jade-
lang.com), and Materialize for styling (materializecss.com). The 
current Gut Instinct implementation supports email, SMS with 
text message gateway Twilio (twilio.com), and WhatsApp. Gut 
Instinct logs responses to a MongoDB database. 

4.3 Study: Fermented foods community designs, 
reviews, & run experiments 

Does drinking Kombucha improve stool consistency? 
Kombucha is a fermented tea drink popular in many parts of the 
world. Fermented foods (miso, yogurt, ayran, kefir) have been a 
staple in many cultures for thousands of years [7]. While there is 
widespread belief that kombucha “benefits the gut”1, there is little 
published empirical evidence for these claims [12]. The 
experimenter hypothesized that kombucha supplies beneficial 
probiotics that help maintain normal stool consistency, and 
designed a between-subjects experiment. 

                                                
1 https://www.nytimes.com/2019/10/16/style/self-care/kombucha-benefits.html 

4.4 Results 
The community-led experiment found evidence that drinking 
kombucha improves stool consistency (Figure 7).  

4.5 Discussion 
Before the Experiment 
From initial design to launch — 37 days elapsed. The experiment 
ran for a week. 
 
Design and Review: The experimenter had not previously 
designed and run an experiment with people but knew some 
concepts about experiment design. They have a PhD degree in 
ecology and are a Brazilian national. The experimenter had lived 
experience of their experiment’s topic but had never scientifically 
studied it. Reviewers provided a total of 32 boolean answers and 
12 detailed comments. Comments focused on two themes. First, 
reviewers helped make the hypothesis and measures more 
specific. A reviewer criticized the experiment’s 5-point Likert 
scale for bloatedness as overly vague. In response, the 
experimenter found and adopted the Bristol stool chart—a picture-
based scale that is the industry standard [37]. Second, reviewers 
suggested improving data quality by instructing participants to 
skip confounding activities. All issues that reviewers raised were 
tightly connected to Gut Instinct’s review rubric (Figure 5). At the 
end of review, the experiment design used appropriate measures, 
provided a minimal-pairs design, tracked confounds, and provided 
appropriate criteria for participation.    
 
Pilots and finding participants: Two lessons emerged. First, some 
participants were loath to look at their stool. Since viewing one’s 
stool is necessary, the experimenter added an inclusion criterion 
enforcing this. Second, some participants reported eating other 
fermented foods in the process; the experimenter modified the 
instructions for participants to not consume these. The 
experimenter publicized the experiment on Instagram, Twitter, 
and newsletter; they also created a poster, and reached out to 
enthusiasts in their city in Brazil and an American city. After 
failing to recruit sufficient participants, the experimenter 
collaborated with a kombucha fermenter in an American city who 
knew more kombucha enthusiasts.   

During the Experiment 
Retention: 57 people signed up for the kombucha experiment; 36 
completed it (68%). 78% of dropouts occurred in the first 48 
hours. The reasons participants reported for dropping out included 
lack of interest, holidays, and work travel.   
 
Adherence: The experiment garnered 76% adherence: 86% for 
days of no kombucha, and 70% when asked to drink kombucha. 
Some participants disclosed confounds and reasons for non-
adherence. For example, drinking alcohol was a reported 
confound, because it might affect kombucha’s impact on the 
body. Similarly, participants’ non-adherence reports included 
scheduled disruptions like travel and holidays and work 
responsibilities like brewers needing to check on their kombucha.   

  

Figure 7: Kombucha community designed and ran an 
experiment which ran for a week. They found that drinking 
kombucha improves stool consistency (N=36; p<0.03). After 

signing up, 68% of people participated in Kombucha; 92% of 
those who participated reported adherence. Reasons for non-

adherence included being busy, annual leave, and brewers 
needing to check on the taste of Kombucha.  
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Data Collection: Most American participants selected text 
solicitations (86%); participants elsewhere received email 
solicitations due to varying regulations around automated text 
messages (e.g., replying to an automated text message in Brazil or 
India is infeasible since the source number is masked). 56% of 
participant responses came within 30 minutes of the solicitation; 
21% of responses took more than 90 mins. Participants sparingly 
responded to follow-up questions. The experiment requested that 
all participants adhere to the protocol as much as possible without 
harming their health. Participants could ask the experimenter (via 
the platform) if confused. Participants’ clarifying questions 
focused on measurements (e.g., measuring stool consistency once 
during the day or multiple times) and specific lifestyle choices 
(e.g., consuming probiotics while drinking kombucha?). 
Participants reported an overall positive experience (Figure 8).   

5 Discussion 
Our research suggests that building tools is not sufficient to meet 
the objectives of communities producing scientific knowledge. 
While the tool stayed the same across different communities’ 
usage, successes came about when the communities found value 
in using the tools. Sociotechnical systems can amplify the efforts 
of committed and knowledgeable individuals [33]. However, 
finding such people, getting them started, and keeping them 
invested requires complementary efforts. The rare disease 
foundation—Ataxia-Telangiectasia Children’s Project—made it 
easier for us to find committed community members. The 
foundation’s community coordinator also shared sticky 
knowledge from prior experience: they shared ways to receive 
quick feedback from the community and reminded participants 
when they did not use Hevelius. We believe this support has 
drastically improved our chances of success. By reducing friction 

at multiple steps, such organizations provide key support in 
creating and maintaining successful collaborations. 
 
Working with communities requires identifying and respecting 
their objectives, structure, and existing expertise. The rare disease 
community was well aware of the importance of their inputs in 
accelerating research about the condition. Once contacted, 
community members graciously shared their needs and challenges 
that have identified future research and development efforts for 
our work. Furthermore, members cared about the community 
having helped each other over the years. Such strong social 
motivation might have been helpful in sustained usage of the tool. 
For cases where such trust might be more nascent, not visible, or 
clearly lacking, researchers can better direct efforts towards better 
understanding the community. Furthermore, the kombucha 
experiment succeeded when the experimenter reached out to 
another fermenter with a large online community following via 
newsletter. Why did people participate once invited? Gut Instinct 
successfully met fermentation enthusiasts’ goals of understanding 
whether fermented foods such as kombucha improve one’s gut 
health. While this community’s objective matched well with the 
tool, other communities had lesser luck. Another experiment by a 
lone enthusiast tested the effect of alcohol on time to fall asleep. 
Despite publicity and initial interest, participants reported low 
adherence [25]. When there are many individuals interested in a 
topic but lack a community, techniques like activation thresholds 
[6] might help make reciprocity explicit. This can also reduce 
potentially wasted efforts later. We hope to draw from our 
interviews to better understand participants’ fatigue and burden. 
 
While an advanced degree is not a prerequisite for using the 
systems, having one might confer an advantage. This is 
unsurprising; contributions to web platforms vary across 
educational levels. MOOCs are disproportionately completed by 
learners from more-affluent and better-educated neighborhoods 
[15], and 73% of citizen scientists and Wikipedia contributors 
have advanced degrees [1,36]. While all 36 Kombucha 
participants wanted to participate in future experiments, only two 
participants wanted to run their own, and both have advanced 
degrees. While simply asking people to contribute might work for 
traditional citizen science projects, experimentation might be a 
bigger leap. This is a humble reminder of how people vary in their 
intent and/or capacity to use the same tool. 
 
Telemedicine tools can be beneficial in a future of limits. 
Supporting experts in tracking only specific condition-relevant 
measures with carefully designed tasks can potentially reduce the 
amount of data collected, stored, and analyzed. Our database 
dump runs, for instance, in the low hundreds of MBs. for fifteen 
participants’ eight weeks usage data.  Furthermore, such systems 
can reduce in-person visits to clinicians for patients and their 
caregivers. Such savings can be substantial for rare disease 
communities that have to travel far to meet experts, and also for a 
society increasingly focused on ecological sustainability. Future 
work can explore specific models for predicting such savings. 

 

Figure 8: Kombucha participants reported an overall positive 
experience; nearly all expressed an interest in participating 

in similar experiments (23/32). Most reported that its 
instructions were easy to follow (28/32) and that reminder 

times were appropriate (25/32). 
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6 Conclusion  
This paper explores ways to support communities in creating 
scientific knowledge by providing two systems; one supports 
communities in working with experts while the other supports 
motivated communities in acquiring procedural knowhow to 
design and run experiments. Our results indicate that the success 
of these systems depends on the motivation and capacity of the 
communities and supporting organizations.  
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