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EPIGRAPH

Whenever you are in doubt, or when the self becomes too much with you, apply the following test.

Recall the face of the poorest and the weakest person whom you may have seen, and ask yourself,

if the step you contemplate is going to be of any use to them.

Mahatma Gandhi
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ABSTRACT OF THE DISSERTATION

Citizen-led Work using Social Computing and Procedural Guidance

by

Vineet Pandey

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Scott R. Klemmer, Chair

Online platforms enable people to interact with friends, family, and the world at

large. How might people go beyond sharing stories and ideas to building and testing

theories in the real world? While many are motivated to dig deeper into their lived

experience, limited expertise and lack of platform support make complex activities like

experimentation dauntingly hard. Novices benefit greatly from expert guidance: this

thesis advocates baking the guidance into the interface itself.

This dissertation introduces procedural guidance to build just-in-time expertise for

difficult tasks. Procedural guidance has multiple advantages: it is minimal, leverages

teachable moments, and can be ability-specific. This dissertation instantiates this insight

xvi



of procedural guidance through a sequence of increasingly complex social computing

systems: Gut Instinct for curating ideas, Docent for generating hypotheses, and Galileo

for citizen-led experiments.

Gut Instinct hosts online learning materials and enables people to collaboratively

brainstorm potential influences on people’s microbiome. Docent explicitly teaches people

to create hypotheses by combining personal insights and online learning with task-

specific scaffolding. Finally, Galileo reifies experimentation in the software, provides

multiple roles for contribution, and automatically manages interdependencies. Multiple

evaluations—controlled experiments and field deployments with online communities

including American Gut participants—demonstrate that procedural guidance enables

people to transform intuitions to hypotheses and structurally-sound experiments. By

enabling people to draw on lived experience, this dissertation harbingers a future where

people can convert their intuitions to actionable plans and implement these plans with

online communities. This dissertation concludes by discussing opportunities for complex

work using social computing platforms.
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Chapter 1

Social Computing for Complex Work

Social computing platforms enable people to connect and share but provide little
to no support for deeper work. This dissertation provides a novel approach
for complex work by introducing procedural guidance in social computing.
Systems instantiating this approach integrate theories from learning, collab-
oration, and interface design. Supporting people in personally meaningful
activities such as generating and evaluating scientific theories provides multi-
ple advantages: people can answer their own questions, the world can learn
something new, and our future society can potentially have more diverse
stakeholders and contributors.

Social computing platforms have revolutionized how people connect, commu-

nicate, and share. Friends and family stay in constant touch about both significant

and mundane life events. Strangers from around the world discuss ideas about topics

of mutual interest. Increasingly, these opportunities to connect and share have also

translated to more active doing: people fund ideas that traditional business places might

balk at [74]. Others have used social platforms to bring attention to important political,

and economic questions [156, 55]. By altering how we communicate and chat, social plat-

forms have cemented a central place in our professional, personal, and leisure activities.

However, the benefits of social computing are not distributed equally.

Every internet user has a voice but some amplify them better than others: people’s

1



online informaking seeking behavior is a significant predictor of their existing social

capital [60]. Widely accessible research papers and articles provide useful learning

materials; however, evidence-based rational discourse on online fora are an exception,

not the norm. Social computing platforms have vastly succeeded at keeping people

engaged with careful interface design but they barely support citizen-led enquiry. These

examples suggest that simply connecting people is not enough for successful citizen-led

work. Absent tools to build expertise, social computing seems less of a transformative

panacea. How might people succeed at their goals using online systems?

People have strong personal motivations and contextual insights; they possess

a remarkable ability to identify patterns and create theories from their lived experi-

ences [59]. While people have an amazing breadth and depth of ideas, they lack the

expertise to implement these ideas. To create knowledge, they need mental scaffolds

for organizing complex work, domain knowledge to compose and execute the steps,

and ways to ask for help. Experts benefit from conceptual knowledge, professional

training, pre-existing organizational structure for collaboration, and direct access to

resources. Currently, citizens lack these resources. By performing personally meaningful

work, people can answer their own questions and their ideas can catalyze creating new

knowledge. As a result, both individuals and the world at large have missed out on

this this opportunity for useful work. How might online systems support citizen-led

knowledge work?

This dissertation advances the design of social computing systems by integrating

learning and collaboration for complex work such as generating and evaluating scientific

theories. Over 600 people from 30 countries have self-organized to generate theories

about the human microbiome and test them by running experiments. Gut Instinct

emodies this insight and introduces a collaborative citizen science platform for people to

transform lived experience into scientific theories. This dissertation raises the question:
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how can global communities create knowledge that meets their goals without waiting

for experts to lead?

1.1 Goal: Scale and Deepen Citizen Contributions

People’s curiosity and needs provide endless possibilities to perform useful work.

People design, build, and track to better understand and improve their health [41].

However, traditional social computing designs don’t funnel this motivation to useful

work.

On numerous online fora, people share their intuitions, observations, folk theories,

and even results from trying different approaches to improve their health, e.g. from sim-

ple ideas like “giving up drinking coffee to improve quality of sleep” to testing different

dietary approaches. Current online forum designs prioritize discussion—sharing per-

sonal details in long, free-flowing text—over goal-directed structure and learning [155].

While learning resources like Massive Open Online Courses (MOOCs) abound, they

adopt traditional classroom pedagogy through lectures focused on conceptual knowl-

edge. Synthesizing the social computing literature highlights three challenges: poor

signal-to-noise from crowds due to lack of training [44]; inefficient collaboration with-

Figure 1.1: The Gut Instinct platform enables anyone to transform their intuitions to
hypotheses and then design and run experiments to test them [131, 132, 134]. Gut In-
stinct integrates conceptual learning embedded via short lectures and software-guided
procedural learning to enable designing and reviewing experiments. Participants from
around the world join experiments, follow instructions, and provide data in response
to automated data collection reminders.
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out careful attention [138]; and poor results (or no results at all) unless experts lead.

Desirable social computing techniques will reliably enable a wide variety of people to

contribute more than they naturally could and manage the dependencies among a large

set of tasks.

1.1.1 Challenge: Designing support for collaboration and knowledge

requirements

While people are connected online and collectively have access to many resources,

they need ways to collaborate effectively. In a large distributed community, there’s

often someone who happens to have important relevant knowledge, usually drawing

on a relevant but distant domain. Such distributed efforts are a type of lead-user

innovation [162]. Having many people work on the same problem increases the odds

that one will break through. Drawing on secondary expertise as inspiration can be an

important agent of creativity because almost by definition, the combination is rare [14].

While many hands make light work, novices need clear contribution opportunities.

Citizens have a different background than professional scientists; they have

unique personal experiences but lack the years of domain training. Novices are also

uninfected by all the knowledge that enables experts to innovate. Success with complex

creative activities requires procedural knowledge (how to do things) in addition to

conceptual knowledge (facts). While many resources offer facts, procedural learning is

often ignored.

To summarize, supporting complex work with social computing requires two

key features: 1) careful collaboration primitives, and 2) procedural support for deeper

individual contributions.
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Figure 1.2: Bloom’s Taxonomy of Learning Objectives provides a research trajectory
for learning tools. Arnstein’s Ladder of Citizen Participation provides goals for social
computing systems

1.1.2 Scientific experimentation: An instance of complex knowledge

work

Many people are interested in understanding and improving their health. Millions

of peple from all over the world share their insights. Why haven’t people run experi-

ments to test these ideas? Scientific experimentation features technical requirements and

contextual choices that are inscrutable for a lay individual yet necessary for success [118].

While professional scientists and commercial ventures run experiments every day, with

notable exceptions [34, 41], empirical papers from non-professionals are vanishingly

rare. This biases the questions asked, studies run, and knowledge created [72]. People

have questions about their health, but lack the expertise and resources to scientifically

investigate them. Broadening the pool of experimenters could help people investigate

their curiosities, develop solutions to improve health and performance, and assist insti-

tutional researchers. To create computational systems that leverage people’s strengths

and mitigate the lack of training, this dissertation focuses on scientific domains that are

nascent, highly contextual, and personally motivating.
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1.2 Thesis Statement and Contributions

This dissertation investigates the question: how might online platforms enable

people perform complex work that is personally meaningful work? Underlying these

investigations is the thesis:

Procedural guidance in social computing catalyzes personally meaningful & useful
scientific work

This dissertation's primary contribution is the idea of intergrating learning in

social computing tfor groups of novices to perform complex, creative activities. The

thesis achieves this integration by building a sequence of interactive prototypes that

enable people to collaboratively generate and test hypotheses. In the process, the

prototypes divide complex work into distinct activities: self-sourcing the design and

crowdsourcing people’s inputs and data. Every prototype advances social computing

further as a domain for deep, personally meaningful work. Beyond introducing learning

abstractions, this dissertation carefully designs the affordances in the system to enable

different users for different needs.

This dissertation makes three types of contributions: theoretical perspectives /

techniques, real-world systems, and outcomes including empirical results.

1.2.1 Theoretical techniques

Improving work quality in social computing suggests deepening individual con-

tributions and broadening participation by providing different contribution mechanisms.

The former requires better learning tools and the latter requires better collaboration

tools and dependency management. Consequently, this thesis’ theoretical contributions

include 1) principles to integrate guidance for complex tasks, and 2) ways to divide

complex tasks into multiple roles or affordances.
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Principles to integrate learning in social computing: Learning broadly com-

prises conceptual (declarative) and procedural knowledge. Conceptual learning—the

primary focus of classroom teaching—involves understanding and interpreting con-

cepts and the relations between concepts [9]. In contrast, procedural learning teaches

”action sequences for solving problems” [140]. To contribute usefully, people need to

have a good working model of both the concepts and procedures for an activity. This

dissertation enables knowledge acquisition in two ways: 1) reifying conceptual bits

in the software; and 2) providing procedural guidance with examples, checklists, and

templates. These techniques aim to move individual contributions to higher levels on

Bloom’s Taxonomy of Learning Objectives (Figure 1.2). Specifically, Docent’s Learn-

Train-Ask workflow (Chapter 4) embeds procedural guidance about hypotheses while

Galileo’s design workflow (Chapter 5) demonstrates the efficacy of reifying the genre of

between-subjects experimentation in the software itself.

Ways to decompose a complex activity: Individuals, groups, and machines pos-

sess complementary strengths. Individuals might be highly motivated on a topic of

personal interest; their lived experiences provide ideas that might be potentially novel.

Groups of people might be less motivated but provide another set of eyes and comple-

mentary knowhow and insights from lived experiences; their efforts can help check slips

from the creator and provide novel inputs. Finally, computers can implement things

consistently to reduce biases but they cannot interpret open-ended instructions fairly

in different contexts the way people can. Given these complementary strengths and

limitations, this dissertation suggests the following process: 1) support an individual in

creating an initial design on a personally meaningful topic; 2) improve it with others’

feedback to create an actionable plan; and 3) implement the plan with the help of auto-

mated software. For all these steps, the system manages the interdependencies. This

dissertation aims to push collaboration up Arnstein’s Ladder of Citizen Participation
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(Figure 1.2).

1.2.2 User interface and system design

When trying to leverage guidance and roles for complex citizen work, two chal-

lenges emerge. First, the internet is a diverse community: people might have poor

models of reasoning and frame their ideas and intuitions in weird ways. The software

should be understandable to a broad range of participants. Second, complex activities

are challenging: the interface should make it easy for people to focus on the current

step and provide resources to get unstuck. Designing such a system requires walking a

fine line: too much information might overwhelm people while too little make people

struggle. These techniques need to be baked in simple, interactive interfaces.

To demonstrate the efficacy of these ideas, this dissertation introduces Gut Instinct,

a collaborative citizen science platform for people to transform lived experiences into

scientific theories. Gut Instinct frames the task of hypothesis-testing as a crowdsourcing

problem, develops techniques and platform that supports different roles with just-in-time

learning, and provides efficient backend support to automate simple tasks. Gut Instinct

divides multi-party collaboration into complementary tasks and supports them using

different contribution mechanisms (like adding a question, editing a response) and roles

(like experimenter, reviewer, participant). This provides people the flexibility to choose

how much they’d like to contribute. Finally, Gut Instinct automatically manages multiple

activities to reduce bias and experimenter/participant workload, such as randomized

placement of people into conditions, maintaining anonymity, and collecting and cleaning

data.
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1.2.3 Outcomes

This dissertation demonstrates how we might draw on people’s diverse back-

ground knowledge, interest, and micro-expertise to expand scientific knowledge and

push it in new directions. More specifically, the Gut Instinct platform instantiates these

ideas enabling participants of the American Gut Project (the world’s largest crowd-

funded citizen science project) to generate and experimentally investigate hypotheses.

344 volunteers from 27 countries created 399 hypotheses about their health and the gut

microbiome. Remarkably, microbiome scientists rated a fifth (75) of these hypotheses

to have a scientifically valuable insight about a topic not covered by existing published

work. Volunteers fleshed out 60 of these hypotheses into complete experimental designs.

My entire work (code + data) is open source so others can edit, build, and experiment.

This dissertation has also enjoyed sufficient support in multiple research commu-

nities: Innovation researchers at MIT, online and offline fermentation and self-tracking

communities, and citizen science groups. Finally, parts of the system have been taught

in classrooms including CSCI 499: (Computing for Social Good) at USC.

This work explores how online learning and process training systems, combined

with peer collaboration, can help people learn similar skills that can be useful in scientific

and design domains.
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Chapter 2

Related Work

This chapter summarizes research in citizen science, lead-user innovation, and social
computing that inform the design of systems in this dissertation. Citizen scientists
have successfully solved expert-defined problems as sensors or algorithms.
However, public involvement in scientific endeavors fail to provide a true par-
ticipatory experience that is citizen-led and personally meaningful. Lead-user
innovation provides a complementary setup. Lived experience, a tight feed-
back loop, and strong personal motivation enable people to create different
and sometimes better products than experts; however, lead users rarely have
access to training, conceptual knowledge, and pre-existing organizational
structure for collaboration. Finally, social computing and crowdsourcing
platforms support sharing potentially novel ideas but converting these to
actionable plans requires expert guidance. This dissertation provides ways
to integrate learning in social computing to enable deeper contributions from
citizen scientists and lead users without expert involvement.

2.1 Science Misses People’s Lived Experience

Science is increasingly networked, multidisciplinary, and open [131]. For instance,

LIGO’s pathbreaking discovery of gravitational waves brought together over 100 re-

searchers from over 100 institutions across 18 countries (ligo.org/about). Scientists

increasingly share data and results faster (arxiv.org). Large scientific projects, like the
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Figure 2.1: This dissertation draws from and contributes to citizen science, lead-user
innovation, and social computing

Human Genome Project, took to agile science by sharing methods, data, and insights to

collaboratively speed discoveries. Scientists also form global collaborations to accelerate

research in nascent scientific domains, like the Earth Microbiome project (earthmicro-

biome.org). At its best, institutional science has benefitted immensely from large-scale

global collaboration. Complementing this success, many online projects enable people

to help scientists [128]: annotating scientific papers [64]; labeling galaxies [78]; and pro-

viding microbiome samples [122], CPU cycles (worldcommunitygrid.org), or personal

data (openhumans.org). Efforts to further expand participation in scientific research are

bearing fruit: Lab in the Wild recruits anyone with an internet connection for behavioral

studies [136]; and All of Us aims to recruit one million Americans from all strata of society

(allofus.nih.gov). Such collaborative efforts from experts and citizens suggest a new

model for scientific work.

Often, when citizens participate in science, it is as embedded sensors that are ag-

gregated by experts. Public involvement in scientific endeavors continues to be largely

limited to performing tasks just beyond the reach of computers. A classic example is
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Audubon’s Christmas bird count, run since 1900 [10]. Online examples include report-

ing flower blooms in Project Budburst [18]; recording wildlife activity [51]; identifying

galaxies from satellite imagery in GalaxyZoo [177]; and biochemistry games: finding

protein structures in Foldit [34], synthesizing RNA molecules in EteRNA [107], and

aligning nucleotide sequences in Phylo [80]. Distributed data contributions from people

around the world—browsing online [37], using activity trackers, and joining scientific

projects—have enabled valuable insights on topics including obesity [4], aesthetic pref-

erences [137], sleep [54], and the human microbiome [121]. At their best, these citizen

science platforms yield novel insights. For example, Foldit players discovered protein

structures that helped scientists understand how the AIDS virus reproduces [36]. Why

have such collaborative efforts succeeded?

Collaboration benefits creativity when it brings different perspectives that build

on each other; it impedes creativity (or worse, causes regression) when—through group-

think—it spreads biases rather than removing them [152]. A humbling example of the

power of fresh eyes: volunteer citizen scientists identified a new class of galaxies (green

pea galaxies) after researching green blots on Galaxy zoo images; experts had dismissed

these images as apparatus error [21]. This volunteer-led discovery demonstrates the

need for fostering independent perspectives while simultaneously cultivating sufficient

knowledge for meaningful domain contributions. Such collaboration requires strategic

isolation: roviding just enough scaffolding to keep biases independent, while not stifling

original ideas for bottom-up knowledge creation.

2.1.1 Opportunity: Can people be scientists rather than just sensors?

Citizens have successfully solved expert-defined problems as sensors or algo-

rithms with a row-filling model of contribution. In the quest to get people to track,

measure, accumulate, or sort both digital and analog data, citizen science has overlooked
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the massive opportunity of leveraging people’s unique advantages: our skills as re-

flective, creative thinkers who generate theories about the world, including ourselves.

People can offer more than just their data and perceptual skills: they create theories, right

or wrong, about a wide range of topics including emotions [77], motivation [117], or

diet. These may be observational theories [82], folk theories passed in a family/culture

across generations [59], or ideas brainstormed in online communities [1]. Perhaps, these

intuitions can provide a starting point for independent, participatory experience that

also assists the scientific community.

When are such personal experiences worth paying attention to? For every intu-

ition proven right, many more may be closer to snake oil — e.g., the widespread belief

in the utility of probiotics despite limited evidence [16]. The global internet increases the

proliferation of both powerful and questionable ideas: sharing speculation is fast while

evaluation remains slow. Moreover, people develop intuitions of cause and effect that

may or may not be correct. Current online forum designs prioritize discussion — sharing

personal details in long, free-flowing text — over structure, succinctness, learning, and

potential scientific utility [155].

Advances in precision medicine have demonstrated the need to engage people in

uncovering and sharing insights [8]. People are highly motivated to improve their health

outcomes, more so if they suffer from a condition that severely affects their quality of life,

naturally forming communities. For example, patients from the Amyotrophic Lateral

Sclerosis (ALS) community on Patients Like Me (patientslikeme.com) organized a study

to track effects of Lithium on their symptoms [166]. This is not surprising; lead users

excel at tackling need-intensive problems where they can use their lived experiences to

identify problems, try solutions, and readily observe the effects [163]. Other organized

communities like Quantified Self hope to uncover lifestyle patterns that may improve their

productivity and health outcomes. The word ‘self’ belies the fact that such movements
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are highly collaborative: amateurs frequently share experiences and invite feedback

on online fora (patientslikeme.com) and blogs (ibsgroup.org). Millions follow these

ideas and some incorporate these intuitions in their lives. What kinds of scaffolds and

structure may help people generate better ideas and implement them as actionable plans

that enable researchers to identify promising insights?

Most scientists develop their skills through an apprenticeship- based graduate

school experience. Apprenticeships emphasize hands-on experience with individualized,

taskspecific feedback [145]. Scientists possess a wealth of declarative knowledge about

their domains (e.g., how to set up a randomized controlled trial), and also procedural

knowledge —some narrow, some broad —towards getting things done (e.g., improving

fMRI signal intensity by having participants consume cocoa beforehand [56]). This

dissertation explores how online learning and process training systems, combined with

peer collaboration, can help people learn similar skills that can be useful in scientific

domains.

2.2 Lead users Succeed When They Know What to Do

and How to Do It

Lead-user innovation is both an inspiration and an application area for this dis-

sertation. Lead users are users of a product (or service) who experience advanced

needs unmet by existing products [163]. The power of lead-user innovation is that

lived experience, a tight feedback loop, and strong personal motivation can yield dif-

ferent and sometimes better products than experts [32]. For example, diabetes patients

have improved insulin delivery [47] and snowboarders have improved their binding

ergonomics. Lead users also collaborate online to build software (github.com), create

novel hardware & reference designs (openaps.org), and share personal data (quantified-
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self.com, openhumans.org). Some go further still, e.g., the transcranial direct-current

stimulation community draws ideas from scientific papers to attempt self-experiments

(reddit.com/r/tDCS). In a few exceptional cases, lead users have authored scientific

papers, e.g., Open Artificial Pancreas creator Dana Lewis discussed the benefits and

challenges of first-generation automated insulin delivery at the 2016 American Diabetes

Conference [41].

Why do people do this? Curiosity, personal learning, and social comparison are

three reasons [136]. A massive interest in personal genomics (over 1 million 23andme par-

ticipants) and the human microbiome (13,000 American Gut participants) demonstrates

people’s yearning for self-understanding. Users of these platforms send data, answer

survey questions, and discuss on fora. Some even use online lectures to understand

concepts of genes, phenotypes, and microbiota [2, 93].

2.2.1 Opportunity: Providing lead users the expertise to tackle com-

plex knowledge work

Sometimes, having a different background than experts can be beneficial. Shared

knowledge is great when it’s right, but blocks progress when wrong. When false

assumptions limit experts, at least some novices are likely to be uninfected. The converse

also holds, and much more often: novices are also uninfected by all the knowledge that

enables experts to innovate. Lead users have an advantage when the key ingredient is

experience intensive; experts retain the advantage for solution-intensive innovations [32].

In a large distributed community, there’s often someone who happens to have important

relevant knowledge, usually drawing on a relevant but distant domain. Having many

people work on the same problem increases the odds that one will break through.

Drawing on secondary expertise as inspiration can be an important agent of creativity
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because almost by definition, the combination is rare [14].

Community-driven approaches to understand personal health and well-being

largely reside outside the realm of institutional science and medicine. While some fads

and beliefs are questionable at best, on occasion communities break new ground that

may provide widespread value, such as fecal transplants to alleviate Clostridium difficile

infection symptoms [19]. Some doctors recommend that patients track their symptoms

and reflect upon them to find insights. Putting people in charge can help them find

significant relief for ailments like chronic migraine [57] and provide researchers and

clinicians with useful patient data (smartpatients.com). Insights from N=1 studies

have helped crack scientific puzzles about the working of the mind [157], heart, and

microbes [165].

Personal needs and challenges can be highly motivating but performing complex

work still requires multiple rounds of trial and error. People need to know the genre of

work and implement it correctly. Professionals have the advantages of training, concep-

tual knowledge, pre-existing organizational structure for collaboration and support, and

direct access to resources. Lead users either seek these resources from others or need to

create them. Providing a correct and complete model for complex, structured activities

might reduce efforts and improve the quality of results. This dissertation reduces the gap

between lead users’ ideas and implementation by providing templates for genre work

using just-in-time training and a collaboration platform to find others. This dissertation

focuses on enabling people transform their idea to a controlled experiment as opposed

to self-tracking or informal iteration which is the focus of most current citizen-led work

in health.

16



2.2.2 Case: Scientific experimentation is difficult

While public contributions have supported institutional science; it’s rare for cit-

izens to design their own experiments. A number of health and behavioral research

projects enlist citizens as helpers (e.g., HabitLab [43]). CivilServant enables online commu-

nities’ moderators to test policy ideas; moderators share these ideas with researchers

who transform them to study designs [51]. Through the PatientsLikeMe website (patients-

likeme.com), citizens and scientists created a study investigating whether consuming

lithium alleviated ALS symptoms [64]. While an initial scientific study had provided

positive benefits, both this citizen science study and a subsequent university study did

not find benefits. Tummy Trials asked participants to generate health questions, introduc-

ing a protocol for self-experimentation combining ideation and self-tracking [36]. In all

these cases, citizens rely on experts to provide sound experimental design.

Why is experimentation hard? Despite a predetermined goal and a formalized

process, experimentation requires making situationally-appropriate decisions. A de-

pendent variable may produce crisp numbers but feedback on the experiment design

itself is more multifarious. Good experiment design is inherently user centered: how

will participants interpret the instructions? Experiment designers need awareness of

others’ interpretation of their ideas and asks. Feedback and iteration might be key to

creative success, especially for novices. Providing feedback on experiment designs re-

quires knowing the success criteria and how to help improve. Feedback can be provided

by experts [45, 145], peers [17, 100], software [42, 71], or even oneself [17, 145]. While

feedback from novices can potentially improve both structure and content, it can also

emphasize superficial issues over the underlying structure [27]. Finally, successfully

running an experiment requires managing multiple processes such as random assign-

ment, anonymizing participant details, and sending instructions and reminders for data

collection.
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2.3 Social Computing and Crowdsourcing Architectures

for Complex Work

Canonical crowdsourcing breaks larger tasks into microtasks; algorithms specify

the division, dependency, and agglomeration activities while workers perform small

tasks supported by task-specific guidelines [89]. Leveraging existing expertise is one

approach for complex knowledge work. One strategy directly employs experts’ just-in-

time feedback to improve crowd work [45]. Workflows manage experts for open-ended

work like developing interactive prototypes [139]. Flash Organizations uses automated

hiring, a hierarchy with a central leader, and optional team leaders for collaborative

projects like product design [158]. Another strategy creates roles that enable more

experienced crowd members to orchestrate the work. Ensemble supports leaders in

guiding and constraining crowd contributions [84]. Role-based approaches confer three

benefits: 1) clean delineation of responsibilities improves chances of task completion,

2) clustering similar tasks reduces overhead and increases consistency; 3) people can

decide their contribution levels. However, experts are expensive, in short supply, and

sometimes prone to groupthink.

Carefully-constructed interfaces can aid novices with task-specific expertise to

solve problems that only experts previously could. Foldit introduced 3D game for speci-

fying low-energy protein structures via direct manipulation [34]. Making a challenge

visually salient is an effective way to on-board novices. For tasks that don’t have as a

crisp visual analogue as protein folding, people need better conceptual support. Prior

work has explored collaborative hypothesis generation and testing on pre-existing data

sets [113, 169]. This dissertation offers a complementary contribution: enabling citizens

to generate data on topics of personal interest.

One way to make complex tasks manageable is to divide them into distinct
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phases. Touchstone demonstrates the power of a semi-automated workflow integrating

experiment design, testing, and analysis [115]. Crowdsourcing has similarly innovated

by creating distinct phases: break larger tasks into microtasks; algorithms specify the

division, dependency, and agglomeration activities while workers perform small tasks

supported by task-specific guidelines [102]. From these systems, our work draws the

idea of dividing experimentation into multiple tasks—some self-sourced, others crowd-

sourced; and introduce just-in-time domain expertise to perform these tasks.

2.3.1 Learning resources at the right time

Providing just-in-time supports, step-by-step instruction, and showing helpful

supportive information are core ideas in instructional design [87]. Crowdsourcing

systems leverage interactive guidance for specific tasks. For example, CrowdLayout and

Cicero provide guidelines and static rules that workers use these to reason about their

choices and improve network layouts [25, 148]. Others like CrowdSCIM and Crowdclass

scaffold pre-task interventions [106, 164]. While learning resources are distributed across

the internet, they are rarely integrated with the task.

Creative, open-ended work has rich pedagogical value. Online work, like online

learning, requires appropriate scaffoldings, such as rubrics [17, 101], decision trees [106,

175], tutorials [6], and quick expert guidance [45]. Similar to general critique of pure

discovery learning [120], simply asking participants to figure it out would be poor

pedagogy. Hence, this dissertation introduces a guided discovery learning approach

as Mayer advocates: expert-curated learning materials help participants start, with

discovery following. Such integration offers a problem-based learning experience with

context and motivation for the material students learn [144]. In principle, these real-

world problems also provide a yardstick for measuring learning.

This dissertation introduces support during the task itself for those with little-to-
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no mental model of the knowledge domain. Like the Shepherd review-writing system [45],

this dissertation provides just-in-time support. There are two key differences: 1) this

work scaffolds the entire creation process, not just the post-draft feedback stage, and 2)

it does not draw on expert time – the knowledge is implemented in the software itself.

2.4 Microbiome Research: A Petri dish for Personally Mean-

ingful Scientific Work

The human microbiome is the collection of all microbes and their genetic compo-

nents in and on our bodies. It is highly personal: each of us hosts a different collection of

microbes, and this collection is influenced by our environment, diet, health, lifestyle, and

genetics. A major scientific effort is to better characterize and understand this diversity

and the causal factors for it (hmpdacc.org). Understanding the human microbiome

requires insights into people’s lifestyles. Microbiome science is nascent, highly contex-

tual, and personally motivating. However, research has only scratched the surface of

understanding the microbiome and using it to improve our wellbeing. Engaging diverse

participants at scale can potentially yield exciting new results.

The American Gut Project (americangut.org) offers a crowdsourced opportunity

for people to get a microbiome sampling kit [94]. AGP participants contribute their

samples for bacterial marker gene sequencing and analysis [43]. Participants then

receive a summary of their results with all their raw data. Anonymized data is publically

available.

To date, more than 13,000 people have participated. Participants submit both

a physical sample and fill out a survey. AGP seeks to build a comprehensive map of

the human microbiome, and identify its healthy and unhealthy components. Analysis

has revealed lifestyle-microbiome correlations of dog ownership and beer or vegetable
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consumption, among others.

People hold the key to understanding the gut microbiome

The structure of the human microbiome is influenced by many factors, including

age, genetics, diet, and xenobiotic and antibiotic use [61]. The gut microbiome in

particular plays an important role in metabolism and immune system development,

and some microbiome dysbioses have been associated with diseases such as obesity,

inflammatory bowel disease, type I and type II diabetes, autism, multiple sclerosis,

and malnutrition [29]. The human microbiome is impossible to understand without

information about its host [43] and many influence factors remain unknown. Teaching

people about the gut microbiome and having them guess associations between the

microbiome and health and disease states can potentially accelerate the process of

discovering links between diet, disease, and lifestyle factors and the gut microbiome.

Currently, the topics for scientific investigation are handpicked by a small group

of scientists. Can opening up the scientific process to the world yield additional insights?

How can people’s situated knowledge supplement institutional science? This disserta-

tion provides systems and techniques for novices to complement experts in creating new

knowledge about the microbiome.

This chapter provided an overview of related research; chapters dedicated to

specific systems discuss additional research that informs that design of those systems.

This dissertation explores integrating learning in social computing for complex, creative

work with two goals in mind: efficacy of the resulting systems (i.e. usability, correctness,

and existential evidence) and generality of the underlying techniques upon which the

tools are built.
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Chapter 3

Collaboratively Generating Ideas

Learners worldwide collectively spend millions of hours per week testing their skills
on assignments with known answers. Might some of this time fruitfully be spent pos-
ing and exploring novel questions? This chapter investigates an approach for learners
to contribute scientific ideas. The Gut Instinct system embodies this approach,
hosting online learning materials and invites learners to collaboratively brain-
storm potential influences on people’s microbiome. A between-subjects
experiment compared the performance of participants who engaged in just
learning, just contributing, or a combination. Participants in the learning
condition scored highest on a summative test. Participants in both the con-
tribution and combined conditions generated novel, useful questions; there
was not a significant difference between the two. Though participants in the
combined condition both learned and contributed, this setting did not exhibit
an additive benefit, such as better learning in the combined condition.

Figure 3.1: A dual objective: integrating citizen science and online learning
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3.1 The Promise of Citizen Science with Learners

People worldwide have theories about their health, environment, interpersonal

interactions, and myriad other topics [59]. Some of these folk theories encapsulate

generalizable insights and wisdom; many others are completely false; and some are

in between [82]. How might we harvest and assess such intuitive theories to extend

human knowledge, especially in domains where science is limited? Worldwide, stu-

dents collectively spend millions of hours a week testing their skills on assignments

with known answers [146]. This community could be a potentially powerful resource.

Repurposing even a small fraction of this effort towards scientific inquiry could pay

significant dividends.

Our intuition is that scientific crowdsourcing will most usefully contribute to

domains where science is nascent and/or highly contextual. Knowledge of the human

microbiome is both. While everyone has a gut full of microbes, its causal influences

remain largely unknown. The Human Microbiome Project and other studies have begun

revealing its diversity and impacts [31, 32]. The world could benefit greatly from a more

comprehensive understanding of the microbiome, what influences its composition, and

the impact our gut has on our health. Understanding how people live may help build

causal models. For example, rheumatoid arthritis patients have altered gut and oral

bacteria [176]. Might changing their gut reduce their symptoms? As in many scientific

domains, people’s initial intuitions about what affects their gut are often poor. Does this

improve with education? Could learners collectively advance human understanding in

this domain? This chapter explores the potential of coupling online citizen science with

learning materials to create scientific questions (Figure 3.1).

The main contribution of this chapter is demonstrating that a crowd of online non-

expert learners can collaboratively perform useful scientific work. To investigate its efficacy
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in practice, we have built a web system, Gut Instinct, which brings together learners to

perform useful collaborative brainstorming on a citizen science project while developing

expertise. A between-subjects experiment compared three variations of Gut Instinct: a

contribution focus, a learning focus, and a combined condition. Participants did indeed

perform useful creative work. For example, they generated 10 distinct questions that

mirror recent scientific discoveries [95]. However, the combined condition did not show

additive benefits.

3.1.1 Leveraging Crowdsourcing successes

Collectively aggregating many people’s responses can produce faster, better, and

more reliable results—at much larger scale—than lone individuals can, at least when

errors and biases are independent events [153]. Canonical crowdsourcing tasks have

clear right or wrong answers – like whether two images represent the same product,

whether an image region contains a feature, or what street number is written on a sign.

Distributing labor redundantly across multiple workers also guards against in-

dividual shortcomings [149]. For example, workers using the Soylent crowd-powered

document editor found a typo late in a paper that eluded all eight authors and six review-

ers [13]. Why? In later pages, fatigue can reduce attention to detail. Because individual

crowd workers saw only a small piece of the document, their collective attention to

detail remained constant throughout. This illustrates how a collection of novices offers

complementary contributions to experts, often in small but nonetheless useful ways.

3.1.2 Dual objective functions in learning and crowdsourcing

Combining university classes in psychology with editing Wikipedia articles led

to improvement in the scientific content of over 800 Wikipedia articles while students
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Figure 3.2: Crowd systems/techniques place different emphasis on work and learning.
Some, like Mechanical Turk [5], emphasize work over learning. Crowd approaches
also vary in their motivation. Games like Foldit [34] leverage participants’ motivation
to perform altruistic work while having fun. Gut Instinct helps participants learn
about the gut microbiome while contributing towards the altruistic purpose of helping
researchers better understand it.

learned about the topic they edited [52]. Similarly, Kim et al. asked learners to create

how-to video segments as part of an online curriculum [83]; the student-created videos

then became a learning resource for the next cohort.

Some crowdsourcing offers a dual objective: user-facing goals include fun (e.g.,

Peekaboom [160]), authentication (reCAPTCHA [161]), and learning (Duolingo [66]).

Under the hood, these tasks simultaneously label images, transcribe text, and translate

phrases. Such crowd work can also bootstrap machine learning [11]. This paper is

distinct from prior work (Figure 3.2) in leveraging people’s individual lived experience,

knowledge, context, and folk theories, rather than treating people as interchangeable

respondents.
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3.2 Hypotheses

This chapter investigates an approach for a community of learners to collabo-

ratively create scientific theories. Learning is any endeavor that seeks to increase a

participant’s knowledge. In this submission—like many MOOCs—watching videos is

the main form of learning, & quizzes are the main assessment. Work is any endeavour

where the outcome has value. In this submission, authoring & answering questions

are the main work forms. This study operationalized engagement as time spent. We

hypothesized that doing useful work on real-world problems helps learning, and vice

versa. Specifically:

H1. Learning improves quality of work on relevant problems. Learning, by

definition, improves performance on similar tasks. Strangely, transfer to novel tasks (like

creating new & different questions) is famously uneven [14]—and sometimes detrimental.

H1 tests whether learning would improve work (e.g., novel question creation) because it

marries lived knowledge (about diet, health, etc.) with a conceptual framework about

the gut’s role.

H2. Working on relevant real-world problems improves learning. H2 tests

whether working improves learning because it increases motivation & provides an

immediately relevant host context for new knowledge.

H3. Working while learning improves learners’ engagement with the learning

material. For similar reasons, we hypothesized that working alongside learning would

increase engagement because the two endeavors both get the wheels turning in hopefully

complementary ways.

We test these hypotheses in the context of brainstorming potential causal relation-

ships in the human gut microbiome.
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3.3 The Gut Instinct System

Gut Instinct is a collaborative system with a dual objective: help people learn

about the gut microbiome, and catalyze the creation of a list of factors that may be asso-

ciated with gut microbiome differences (Figure 3.3). People anonymously post questions

about lifestyle and health for peers to answer. Learners both ask & answer questions,

there are no distinct workers. These questions and discussions provide researchers

cues to build associations between lifestyle and the microbiome. Gut Instinct is a web

application built with Meteor (http://www.meteor.com). The front-end uses Angular

(http://www.angularjs.org) and is stylized with Materialize (http://www.materialize.css).

Figure 3.3: Gut Instinct is a web system to learn about the gut microbiome and create
causal theories about gut microbiome (a) A discussion board where learners add their
questions and discuss them with other learners (b) ”Add question” box for people
to add their own questions, (c) A tutorial video showing how gut microbiome varies
across countries with different food habits [174]
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3.3.1 Curating content based on topics

Gut Instinct provides expert-approved learning material including online lectures,

science articles and research papers. Participants add articles they feel are useful, which

can be fact-checked by experts. The gut microbiome is an active area of research with new

results being generated rapidly. A popular MOOC provides an introduction to science

the gut microbiome including its relation to some lifestyle choices [93]. Popular online

articles about the microbiome are split between providing correct, useful information

and clickbait articles without scientific validity.

Gut Instinct organizes the learning material based on topics such as diet or

antibiotics. A topic-based classification of learning material provides two advantages:

(a) People can deeply focus on the topics that interest them, and (b) Topics related to

specific lifestyle aspects can trigger specific questions. The topics pages include videos

and articles about diet, antibiotics, probiotics, physiology, and genetics based on vetted

content from online sources. Quick multiple-choice questions with detailed feedback

at every topic page help people test their understanding (Figure 3.4). Overall, these

elements of the interface form the learning part of the system.

Figure 3.4: A question on topics page for diet to test understanding of the learning
material
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3.3.2 GutBoard: Discussing and answering questions

The GutBoard provides a discussion board with user-generated questions tagged

by topics (Figure 3.3a). People can browse questions, answer them, or participate in

discussions. GutBoard presents unanswered questions first. The most popular questions

(in terms of discussion comments) bubble to the top of the board.

3.3.3 Adding questions

Gut Instinct provides different tutorials, articles, and expert examples to help

users contribute. Gut Instinct requires that questions have a two-part structure: a yes/no

question followed by an open-ended elaboration. For example, the yes/no question “Do

you take any meal replacements such as protein powders?” might be followed by “Do

you take them on a daily basis?” This structure addresses two problems we witnessed

with pilot users: (a) Some questions were actually multiple different questions, confusing

readers (b) Readers had to read every question in full to understand what was being

asked, even if the topic was not relevant to them. With this structure, every question has

a single focused topic. Participants can also start a discussion about the question and

provide relevant tags. “Add Question” box in Figure 3.3b shows the interface.

Nudges to think creatively and to stay on task

Figure 3.5: An example of a nudge used in Gut Instinct to remind people of their role
as a citizen scientist in raising interesting questions about the gut microbiome
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Gut Instinct employs several best practices for increasing high-quality contribu-

tions [75, 138]. It provides cues to teach participants to generate good questions. All parts

of the Add Question box contained sample questions to help participants frame their

questions that could be useful to them and to gut microbiome researchers (Figure 3.5).

To reduce user confusion, GutBoard was seeded with expert questions that set norms

for the nature of questions. To provide a clear call to action, GutBoard was the default

landing page and the only place to add or view questions. Every page had a tour that

users could invoke anytime to learn its interface.

3.4 Experiment: Work, Learning, & Combined

Figure 3.6: Three conditions for experiment. (a) Contribute condition where partici-
pants read some general articles about microbiome and added questions and answered
others’ questions (b) Learn condition where participants saw curated topic videos
(e.g. about diet) and answered practice problems from a Coursera class [93] (c) Com-
bined condition where participants saw curated topic video, and added questions and
answered others’ questions

A between-subjects experiment compared the work and learning performance of

participants across three different conditions: Contribute, Learn and Combined (Figure 3.6).

In the Learn condition, participants were provided learning material and some practice
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problems, both curated from the Coursera microbiome class [93]). In the Contribute

condition, they had access to brief pop-science articles to know basic details about the gut

microbiome, and GutBoard for creating questions. In the Combined condition, subjects

had access to both learning material from Coursera and the GutBoard. The GutBoard

content was common to both conditions that used it (Contribute and Combined).

Method

Participants were randomly assigned to one of the three conditions. Each com-

prised an individual lab session followed by web study, during which participants were

asked to use the tool for 3 days. During this period, participants asked and answered

each others’ questions in the tool.

Lab: A researcher introduced the condition-appropriate Gut Instinct site. Partici-

pants were told there was no lower or upper limit on how much time to spend using

the system. Each session comprised the following steps: (1) accessing the consent form,

(2) seeing GutBoard/problems, (3) accessing topic videos/articles, and (4) participating

in a short interview. The interview asked participants about their knowledge of the

gut microbiome before using the system, and their experience using the system. The

interview was tailored to the participant’s behavior: for example, if a participant did not

click on Google Scholar references inside Gut Instinct but opened up a browser for web

search, the interviewer would ask why.

Web usage: Once all participants had completed the lab portion, the web applica-

tion was opened to all participants for collaborative usage for three days. Gut Instinct

sent email notifications about activity on the site, along with feedback on some questions

raised on GutBoard such as providing links to research studies about effects of eating

blueberries on the gut microbiome.

After web usage, two independent raters (experts in human microbiome) rated
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the questions on novelty & usefulness using the following workflow: (1) calibrate: rate

3 questions independently and discuss; (2) rate: independently rate all participant

generated questions; (3) combine: discuss ratings where different & develop a common

score. The discussion in step 3 was valuable for adding to the set of rules for rating such

open-ended questions.

Table 3.1: Demography information for 44 participants. Some participants did not
complete portions of survey

Nationality Indian = 22 Non-Indian = 22

Gender Female = 7 Male = 37

Age 18-20 = 1 26-30 = 19

21-26 = 14 31-35 = 5

Ethnicity Indian = 18 Caucasian= 11

Asian/Pacific Is-
lander= 5

Hispanic/Latino = 2

Others/Not said = 4

Current Undergraduate = 3 Ph.D. = 29

educational status Masters = 7 Postdoc = 2

Participants

44 participants were recruited from a Southern California university (Table 3.1).

Participants were novices in terms of their knowledge of the human microbiome. Ran-

dom assignment balanced gender and nationality across conditions. There were equal

numbers of women—and equal numbers of men—in each condition. Where not evenly

divisible by 3, one condition had one more or fewer.
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Measures

Dependent variables comprised work (number of questions contributed, novelty

and usefulness measured by blind, independent raters); learning (score on summative

test); and engagement (time spent during lab session, and number of discussion com-

ments during web usage). Qualitative measures included how participants used the tool,

where they got stuck, how they collected information, which questions they engaged

with, and a post-experiment survey.

Results

Analysis of variance estimated the effect of working, learning and the work-

learn interaction. Two condition comparisons used a Mann-Whitney U test with the

corresponding independent variable (learning or working).

Figure 3.7: a) Participants in Contribute and Combined conditions created questions of
similar quality b) Participants in Learn condition performed the best on a summative
test. Learning did not show a significant effect on score but working did

Work: Did access to Coursera learning material (Combined) impact quantity and
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quality of questions relative to not having access (Contribute)? The Combined partic-

ipants generated questions of similar novelty and usefulness (M = 3.5) as Contribute

participants (M = 3.93), Mann–Whitney U = 79, n1 = 14, n2 = 15, p < 0.23 two-tailed

(Figure 3.7a). Figure 3.8 shows two examples of questions rated by experts. Ten of the

29 questions mirrored questions found on the American Gut survey. Half of the partici-

pants’ questions (14 of 29) asked about diet. Participants in Combined and Contribute

conditions generated a total of 14 and 15 questions, respectively, averaging one question

per participant (see Figure 3.10).

Figure 3.8: An example of a good and bad question added by participants. Soylent
question was scored 5/6 (2 on novelty and 3 on usefulness) while the belly question
was rated 2/6 (1 on novelty and 1 on usefulness)

Learning: Did participants instructed to ask questions (Contribute & Combined)

score differently than those who were not (Learning)? Did access to learning videos

(Learning & Combined conditions) impact quiz scores relative to not having access

(Contribute)? A two-factor ANOVA estimated these effects, finding significantly lower

scores for those requested to ask questions. By contrast, access to learning materials did

not yield a significant difference in quiz score.

The Learn participants performed scored higher (M = 5.93) on Learning test than

participants in Combined (M = 4.38) or Contribute (M = 3.93) conditions. An analysis of

variance showed that this effect was significant for working, F(1, 39) = 5.22, p < 0.03, but
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not for learning, F(1, 39) = 0.46, p < 0.5 (Figure 3.7b). The effect size for working was

small (Cohen’s effect size d = .11).

Figure 3.9: There were no significant differences in time spent in lab session across the
conditions

Engagement: The mean length of lab session was 20 min (varying from 9-40 min).

Learn participants spent marginally more time (M = 26.9 min) in the lab session than

participants in Combined (M = 22.5 min) or Contribute (M = 16.7 min) conditions. An

analysis of variance showed that this effect wasn’t significant for either Learning F(1,

41) = 3.40, p < 0.07 or working F(1, 41) = 1.95, p < 0.17, (Figure 3.9). Combined and

Contribute participants contributed 35 discussion comments each; Learn participants

contributed 10 discussion comments.

38 of 40 correspondents reported prior use of online courses, varying from occa-

sional use of online learning material to taking more than five online classes. Preliminary

analyses found no effects for gender and nationality (Indian or non-Indian), so these

were excluded from further analyses. Table 5.1 summarizes results from the experiment.
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Table 3.2: Summary of results from experiment

Measures
(mean values)

Combined Contribute Learn p

No difference in quality or quantity of questions across Combined or Contribute

Quality of
questions (2-6
scale)

3.5 3.93 - < .23

# of ques-
tions/# of
participants

14/14 15/15 - -

Working reduced test scores

Test score
(max: 12 pts)

4.38 3.93 5.92 L < .5, W < .03

Learning or contributing did not have a significant effect on time spent in lab

Time taken
in lab session
(min)

22.5 16.7 26.8 L < .07, W < .17

# of dis-
cussion
comments

35 35 10 -

3.5 Discussion

These results suggest that some learners create useful research questions based

on their lifestyle but its effect on better learning is unclear.

Why did Learn participants perform better on tests? Learn participants had a clear

objective: learn about the gut microbiome, practice problems related to it, and take

a summative test. By contrast, participants in the other two conditions had to both

generate novel questions and take the summative test. They may have placed less

emphasis on the test. Generating questions and taking test on a novel topic might

have required greater effort than what the participants wanted to put in. Additionally,
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Figure 3.10: Most participants reported that the learning experience was helpful and
the system was enjoyable. 65% of participants asked questions; the mode was 1)

difficulty of creating questions may have lowered participants’ confidence in taking the

test.

Personalized learning and need for feedback Participants were curious to know the mi-

crobiome science behind disclosed aspects of their lifestyle. One participant commented,

“After answering the question, I would expect to see some succinct information about

where my lifestyle stands with respect to scientific wisdom.” Participants also asked

for a section curated for them by the tool, or a section where they could save items of

personal relevance.

Need for self-directed learning Online learning material provided useful information

about a complex topic like the microbiome hoping that it might spur participants to

find and use other similarly trustworthy sources of their liking. In the lab, participants

used web search to find relevant resources. Most participants reported that they did not

search at home.

Learning did not improve quality of work Combined participants did not generate

questions of higher quality than those without learning material (Contribute condition).

Crowdclass [106] found similar results where workers who simply classified images did

better than those who learned about decision trees and subsequently classified images as

an assignment. How do online learning materials and useful work tie to each other? Gut

Instinct explored one design point where learning and working were provided specific
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components in the tool to reduce participant confusion. An alternate approach could be

to have a work-biased design where learning material would be tailored to participants’

questions or a learn-biased design where participants could add questions only in the

specific context of learning materials. For instance, people could raise questions at

different point of a topic video [108] rather than using a separate part of the tool.

Difficulty of generating questions A remarkable and concrete measure of partici-

pants’ insights is that ten of their questions mirrored those asked by the American Gut

survey [95]. Unsurprisingly, other participants reported difficulty creating good ques-

tions. Asking questions is a valuable metacognitive experience that can be scaffolded by

examples of good questions from experts.

Gut Instinct sent email asking people to contribute, reminding them of the im-

portance of their task, and showing successful examples of citizen science work. Such

reminders prompted a temporary increase in questions increased or discussion contri-

butions [98] but did not lead to a sustained stream of questions and discussions. Some

participants complied with the letter of the request but not the spirit by taking a sample

question and tweaking it slightly.

What kind of innovation can we expect from citizen science Half of participants’ ques-

tions were about diet. Diet offers both a clear influence mechanism and immediate

personal relevance. While a compelling video about effect of diet on the microbiome

likely helped, a video alone appears insufficient: for instance, the topic of genetics also

had a video, but no participants asked questions about genetics. Moreover, many diet

questions are perceived as less personally disclosive than genetics questions.

That participants asked many questions about diet and none about genetics is

consistent with patterns of where lead users innovate, and where they don’t [162]. Lead-

user innovation works best for need intensive problems where people’s lived experiences

provide the key ingredient, e.g., a snowboarder who cuts their boots to improve fit. These
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innovations arise through trial and error, and solution efficacy is readily observable.

Lead-user innovation is less common with solution intensive problems, where highly

technical knowledge, access to equipment, and/or significant financial capital are critical.

Does browsing displace contributing? Participants spent most of the lab session

browsing discussions and learning material. By our observation, later participants

spent more time using the system in the lab. Despite spending more time browsing

discussions, we think later participants added fewer questions. Participants mentioned

that browsing and answering questions felt like contributing without putting in a lot of

effort. Participants also reported that they had to break a mental barrier to publicly post

a discussion comment or question.

Limitations

Participants could login as little or as many times as they wished. One participant

commented that even though she had some ideas to add, she was conscious of disclosing

information about her personal life (participants were anonymous). It may be that using

the tool in an experiment made them more cautious of what they added or commented.

As a web application, participants assumed comparable facilities to forum/ discussion

sites like Quora. This exemplifies a challenge of testing research prototypes: the absence

of production-level features can change participants’ impressions and possibly their

behavior.

3.6 Science with Learners: Promise & Challenges

This chapter investigated the merits of combining learning and contributing.

While experimental results did not show the hypothesized additive benefits, we still

believe this combination has potential. Is it intrinsically self-contradictory to ask learners
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to contribute scientific ideas? Not necessarily. In addition to the diversity benefits that

the global community brings, those with brand new knowledge can, for example, give

useful feedback to peers [101]. Furthermore, the newly-aware sometimes articulate

useful insights that familiarity has blinded experts to [73]. Drawing on the results,

related literature, and our intuitions, here are avenues that might find additive benefits

where this experiment did not.

Aligning objectives The chapter’s experiment gave participants two objectives:

take a summative test and generate ideas for lifestyle-microbiome relationships. While

both relate to the same general topic—the microbiome—the “doing” of each was quite

different. For example, the question that the fewest participants answered correctly

asked which type of bacteria population would be affected by a behavior change. While

the test emphasized specific biological facts like this, participants’ GutBoard questions

were much more general. Consequently, it is not surprising that success on one didn’t

catalyze success on the other. Conversely, given the mild negative correlation, it seems

likely that time spent on one might have taken away from time spent on the other. More

tightly aligning the test of learning with the work activities could yield the additive

benefits we seek. (We say test of learning because participants may indeed have learned

more in ways not measured.)

We also hypothesize that an additive benefit is more likely when the knowledge

and/or motivation generated by one activity transfers to the other. While this may seem

obvious in retrospect, the loose-connection problem observed here may be relatively

common. We hope the results warn against this risk.

Make learning & work personally relevant Many American Gut Project (AGP) par-

ticipants exhibit a strong intrinsic motivation to learn more about why they have a

particular microbiome [43]. The students who participated in this experiment may

not have equivalently strong motivation. Motivated users may increase the quality of
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citizen science work. For instance, AGP participants could organize a focused effort

around a specific health issue like Type 1 diabetes or Inflammatory Bowel Disease (IBD).

Similar to how Wikipedia editors co-ordinate efforts [99] using Gut Instinct with more

differentiated roles like question generation, question ranking, and literature search

might lead to further distinguishing work.

Learning & working: integrate & provide clear criteria We believe that integrating

learning and work will be mutually beneficial when learning new material immediately

opens up the possibility of contributing useful work and contribution solicitations

include relevant learning material. This extends problem-based learning [144] and just in

time learning [15] to the scale of Internet. For example, browsing StackOverflow before

fixing programming questions leads to better work, and lateral learning [116]. Similarly,

global-scale distributed contributions like peer review have enabled massive online

courses to offer creative, open-ended assignments through peer review [101]. Such

active learning approaches seek a dual objective of content learning and metacognitive

growth [39].

Reflection and curiosity play a similar orienting role: having people guess the

answer to a task-relevant question before performing the main task led to better per-

formance on the task when hints were revealed to maintain the curiosity of the learn-

ers [3, 105]. Similarly, the surprise that arises from making a guess that’s revealed to

be wrong generates a teachable moment for learners. How might we use these lessons

for online learners to teach themselves about specific domains while performing useful

work?

Other fields for this approach Many other fields may benefit from the diverse contexts

that online citizen scientists offer. For example, 96% of psychology experiments used

participants from Western industrialized countries [72]. Recent attempts have started to

collect and analyze data about people all across the world by offering them fun-based
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rewards in lieu of collecting data about their online interactions [136]. Success of such

initiatives hints at a motivated set of online participants who could also benefit from

learning about cultural psychology concepts in more depth while undertaking relevant

scientific work.

This chapter investigated techniques for integrating learning and citizen science

for the benefit of both. For us, the most striking result is that users contributed many

causal questions of sufficient novelty and importance that they only recently have

emerged in the literature. It is possible that other of the causal questions will be borne

out in the future. This study also illustrates the challenges of double-bottom-line work.

Specifically, these dual objectives can be in tension rather than being additive. The

chapter describes the Gut Instinct system and suggests strategies that may help the

dual objectives enhance each other. Looking forward, we hope the approach introduced

here will find value in other domains especially where the science is nascent and/or

contextual information is key. The knowledge of science impacts a diverse planet; in the

future, this diverse community may importantly contribute to it.

This chapter, in part, includes portions of material as it appears in Gut Instinct:

Creating Scientific Theories with Online Learners by Vineet Pandey, Amnon Amir, Justine W.

Debelius, Embriette R. Hyde, Tomasz Kosciolek, Rob Knight, and Scott R. Klemmer in

the proceedings of the ACM Conference on Human Factors in Computing Systems (CHI

2017). The dissertation author was the primary investigator and author of this paper.
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Chapter 4

Collaboratively Generating Hypotheses

People’s lived experiences provide intuitions about health. Can they transform these
personal intuitions into testable hypotheses that could inform both science and their
lives? This chapter introduces an online learning architecture and provides system
principles for people to brainstorm causal scientific theories. The Learn-Train-Ask
workflow (Figure 4.1) guides participants through learning domain-specific
content, process training to frame their intuitions as hypotheses, and collab-
orating with anonymous peers to brainstorm related questions. 344 volun-
tary online participants from 27 countries created 399 personally-relevant
questions about the human microbiome over 4 months, 75 (19%) of which
microbiome experts found potentially scientifically novel. Participants with
access to process training generated hypotheses of better quality. Access to
learning materials improved the questions’ microbiome-specific knowledge.

Figure 4.1: The Learn-Train-Ask workflow enables novices to ask useful questions
collaborate with online peers
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4.1 Can People be Scientists Rather than Just Sensors?

Thinking like a scientist involves generating useful questions, operationalizing

them as hypotheses, and testing them with experiments. While people generate (implicit)

intuitions from lived experiences, transforming tacit knowledge into explicit questions is

not easy. People don’t always realize the extent of their knowledge and even when they

do, asking questions that can be answered by others to yield clear, actionable insights is

hard. For instance, people often bury questions in long entries (Figure 4.2). Transforming

intuitions into falsifiable questions is a key skill for scientists and designers alike. How

can people create questions that are novel (contain new information), useful (relate to

and potentially extend existing scientific knowledge), easy to answer, and specific (relate

to only one topic)? Such questions can potentially accelerate research in nascent scientific

domains, such as the human microbiome.

Figure 4.2: This post to a Mayo Clinic forum shows how people seeking advice online
combine many ideas into one post..

This paper contributes (1) the Learn-Train-Ask method for people to perform per-

sonally meaningful scientific work by sharing personal insights and receiving feedback

from others, and (2) its embodiment in Docent — a novel crowdsourcing system for

causal scientific questions. Docent enables novices to ask useful questions by learning

domainspecific content, undergoing process training to develop task-specific skills, and

collaborating with online peers. A between-subjects study evaluated this new method

by measuring the quality of participants’ questions to test causal scientific theories
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about the human microbiome. 344 voluntary online participants from 27 countries —

including participants from the American Gut Project, Open Humans, Coursera, and

Reddit — signed up to share personally-relevant questions about the human micro-

biome. Participants created 399 questions, 75 (19%) of which microbiome experts found

novel. Participants with access to process training generated hypotheses of better quality.

Access to learning materials improved the questions’ microbiome-specific knowledge.

These results highlight the promise of performing personally-meaningful scientific work

using massive online learning systems.

4.2 The Docent Social Computing System

The Docent social computing system enables people to create specific, personal

hypotheses by providing: content learning & process training; a guided question-asking

interface; and an online collaboration platform. Docent was designed via multiple

iterations of early pilot studies. Docent’s pilot participants were 50 lead users of the

American Gut Project & Health Data Exploration workshop (hdexplore.calit2.net). Early

participants used the website to provide in-person feedback about the interface. As the

system matured, later participants provided both explicit online & in-person feedback

along with usage data that led to a number of improvements. For instance, a pilot

session led to the idea to enable editing others’ questions to improve clarity (especially

for non-native English speakers).

The Docent web application is built with Meteor (meteor.com), and extends Gut

Instinct [131] that also leverages learning materials, but does not address causal theory

generation. The front-end uses BlazeJS (blazejs.org) and is styled with Materialize

(materialize.css).
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4.2.1 Learn-Train-Ask: From intuitions to hypotheses

Docent embodies three main principles. The first is two-way integration of learn-

ing and asking questions for improved conceptual understanding of the microbiome.

Novel, domain-specific work (such as asking questions for micro-biome discovery)

needs to integrate a novel idea with existing knowledge, perhaps even using specific

terms/metrics in the process (e.g. Bristol stool scale for quality of bowel movement). To

forge a two-way link between learning and asking questions, Docent provides online

lectures and feed-back on the questions people create using scientific material. For

instance, for a question about the effects of probiotics on mood among people suffering

from gastrointestinal diseases, Docent would provide feedback using lectures about

probiotics, gastrointestinal diseases, and the gut-brain axis. The two attributes that

training questions seek to model are a) that others can answer them, and b) that each

addresses a single topic. Training helps participants get a feel for how precise questions

should be: overly vague and overly specific terms both reduce a question’s utility. To link

many ideas with one cause, a sequence of questions can iteratively refine a hypothesis

space. For instance, a question linking probiotics use to bowel movements might begin

by asking how frequently people consume probiotics and in which form, following up by

asking about bowel movements. Third, Docent provides clear success criteria: creating

useful questions. Docent converts question-asking and answering into an engaging

social interaction by enabling people to participate in multiple ways, such as by asking

questions, adding follow-ups, editing questions to improve clarity, or responding to

questions. A new user can access the entire Docent system only after adding a question.
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4.2.2 Learn content: Integrate concepts with insights

Docent’s learn module teaches people about the gut microbiome using online

lectures, lifestyle questions, feedback from scientific material on questions, and guessing

potential mechanisms (Figure 4.3). We describe each below.

Figure 4.3: User flow of Docent learning module. Participants reflect on their lifestyle
by (A) answering a personal question before (B) watching an online lecture about
probiotics and the microbiome. Participants (C) must propose a mechanism when
adding a question and (D) they receive feedback from scientific material on their
questions. Probiotics was one of 16 topics for which Docent provided 5min long expert
lectures.

Online lectures to improve conceptual understanding: The human microbiome is

nascent, yet fast-growing. There is a lot of room for new contributions, but few people

have up-to-date and accurate knowledge, even to the extent that it exists. People ask

more questions when the learning material causes inconsistencies in their understanding

of a topic [123]. Since few people know about the microbiome, Docent uses introductory

learning material curated from Gut Check, a Coursera MOOC [93], rather than scientific

papers that may be too abstruse. Apart from introductory material about the microbiome,
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Docent also provides learning material about specialized topics, such as gastrointestinal

diseases & the gut-brain axis, to engage people in guided discovery learning based on

their interests and health conditions (Figure 4.3B).

Personal questions to improve reflection: Prompting participants to explicitly

reflect on the learning topic can increase curiosity and question-quality [3, 104]. Before

watching a lecture about the microbiome, Docent invites people to answer questions that

make them reflect on the connection between the learning material and their lifestyle

(Figure 4.3A).

Guessing a mechanism to reflect on question and knowledge: Docent asks people

to guess mechanistic explanations for how the microbiome can play a role in answering

their questions (Figure 4.3C). This is intended to help users learn by connecting personal

observations with existing knowledge [147].

Feedback from scientific material: Rapid, relevant feedback improves quality [68].

The first author provided links to scientific papers and web content in response to

people’s questions. To integrate questions with Docent’s learning material, they also

received feedback on their questions using links to the Coursera MOOC lecture hosted

on Docent (Figure 4.3D). Participants also added scientific papers to questions.

4.2.3 Process training: From intuitions to scientific questions

Docent uses three components to help people ask useful questions: a training

guide, expert examples, and a question-asking checklist (Figure 4.4).

Training guide to identify useful features: New Docent participants must add a

question before accessing the entire system (learning, training, and the GutBoard). Before

asking a second question, however, a user needs to complete the training guide: people

learn about five features of successful questions; train by identifying these features in

two sample questions (Figure 4.4A,B); and then immediately ask a question. Training
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draws on successful techniques from crowd work and peer assessment by using gold

standards [88] and rubrics [7]. When adding a question, a checklist reminds participants

about the features of good questions (Figure 4.4D).

4.2.4 Ask well-framed questions

Good questions specify a cause and associated effects.

Two-step question format to separate cause and effect: Docent questions comprise two

parts: a top-level question identifies a cause (e.g., frequency of consuming probiotics).

A follow-up question links the cause to a specific insight from the user (e.g., effects of

consuming probiotics). The creator can add multiple follow-ups to link a cause to many

effects.

Templated options to reduce common errors: Poor and/or vague options can dis-

courage responses, erode esprit de corps, and model bad behavior that others follow.

To counter this, Docent provides popular templated multiple-choice options. These

templates are editable, but providing templates helps people be specific.

Cues to improve question quality: These cues comprise alert messages when people

add long or short options; notes about details needed in their questions; and restricting

people from adding a question without providing a potential mechanism or comment.

Figure 4.4: The Docent training process. People (A) learn what makes a question useful,
(B) practice on sample questions, and (C) read expert-curated questions. (D) When
asking a question, a checklist reminds people to ensure their question meets the criteria
for useful questions. Answerability was one of 5 features for which Docent provided
training.
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4.2.5 GutBoard: Crowd responses, discussion, expert feedback

The GutBoard is designed for quick question traversal, easy response, and col-

laboration. Only the top-level question from each question is displayed: if a user is not

interested in, say probiotics, they can simply skip that set. However, to access follow-ups,

people need to answer the top-level question by selecting from the existing options or

adding their own. To focus people’s attention on specific questions, the first author

starred promising questions that people can access from the Starred tab (Figure 4.5).

Starring signifies that a question is likely of high quality or broad interest, and helps

focus participants’ answering efforts on them. Docent also enables people to bookmark

questions of interest, so they can visit them again.

To de-incentivize lurking and increase engagement, the GutBoard shows only

one question at a time; we call this sequential access. When people could see multiple

questions simultaneously (parallel access), they skimmed through many questions

without interacting with them.

Figure 4.5: After answering a top-level question, participants can see follow-up ques-
tions, add new options, new follow-up questions, edit the question, guess potential
mechanisms, and bookmark. A star (added by an expert) shows that this question may
be promising for further enquiry by people.
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4.3 Hypotheses: Effect of Learning and Training on Ques-

tion Quality

Learn-Train-Ask scaffolds collaborative scientific question generation. We tested

the following hypotheses in the context of brainstorming potential causal relationships

in the human gut microbiome.

H1. Access to learning improves question’s content. While people’s questions

are based on their experiences and curiosity, aligning them with what is already known

about the microbiome can uncover novel insights. Alternately, learning can make people

reflect less on their personal knowledge and more on institutional knowledge, reducing

the novelty of their questions. A question is deemed to have good content if it is

insightful (exhibits microbiome-specific knowledge) and novel (contains potentially new

knowledge for microbiome science).

H2. Just-in-time training improves question’s structure. We hypothesize that

training helps people create useful questions for receiving feedback as well as for gener-

ating insights for researchers. A question is deemed to have good structure if it is easy

for other participants to answer and focuses on one topic.

4.4 Study: Scaffolds for Better Questions

A between-subjects study compared the participants’ question quality across

four conditions: Learn, Train, Neither and Both. In the Learn condition, participants

saw online lectures, answered personal questions, guessed mechanisms, and received

feedback from scientific material on their questions (provided by the first author). The

Train condition provided participants access to a training guide, expert examples, and

checklist. In the Neither condition, participants did not have access to either the Learn
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or Train step, while in the Both condition they had access to both. All participants

had access to the question-asking and GutBoard collaboration module (with required

condition-appropriate adjustments — e.g., participants in Learn and Both conditions

were asked to guess the mechanism for their question, while participants in the other

two conditions were asked to add a discussion comment). The GutBoard content was

unique to the participants for a specific condition, to ensure that participants were not

influenced by behavior in other conditions.

Method

Participants were randomly assigned to one of the four conditions. Each gave

participants access to a condition-specific Docent. Each condition began with an intro-

ductory tour describing the significance of microbiome research and the importance

of their contributions towards making discoveries. At the end of the tour, participants

in every condition had to add one question (using identical question-asking modules)

before moving on. Docent sent regular email reminders about site activity.

Participants

Recruitment: Participants were recruited via online publicity. To invite people

especially interested in their microbiome, the American Gut Project emailed 550 par-

ticipants. Docent was promoted on the American Gut Project’s and their collaborators’

Facebook and Twitter pages. Docent was added as a project on Open Humans (openhu-

mans.org) — a platform where people donate their personal data for scientific research

and participate in scientific experiments. Docent was posted on multiple subreddits

pertaining to health and lifestyle (e.g., reddit.com/r/keto) and added as an optional

assignment to the Gut Check Coursera MOOC [93]. Participation was voluntary and un-
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paid; participants were entered in a raffle for an American Gut Microbiome kit (provided

for $99 on American Gut’s crowdfunding page (fundrazr.com/campaigns/4Tqx5)) on

survey completion.

Measures

Dependent variables comprised structure, content, and creativity of questions

(Table 4.1). American Gut researchers with multiple years of post-PhD expertise inde-

pendently rated all 399 questions. (330 questions were rated by three; 69 were rated by

two). The average ICC measure for 3 raters was 0.48 with 95% CI[0.42,0.54], (F (328,656)

= 3.73, p<.001). Raters agreed that evaluating novelty was difficult since the nascent

microbiome literature is rapidly growing.

Table 4.1: The five question quality criteria (rated as 0: no, 0.5: maybe, 1: yes). The
5-point sum represents overall quality.

Criteria Operationalized as

Structure Answerable: Is it a question about the participant?

Specific: Does it ask about only one topic?

Content Insightful:Does the question & discussion link to existing
knowledge of the microbiome ?

Novel: Is there a chance the world will learn something?

Creativity Is it reasonably interesting/creative?

Raters were instructed to assign points for structure if it asked participants about

a specific topic that they could answer. For example, How often do you consume fermented

foods? was rated as both answerable by participants and specific, while, Does our modern

agricultural system affect our microbiome? was neither answerable nor specific. Question

content was the sum of insightfulness and novelty. Insightfulness addressed the quality
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of the microbiome content in the questions. Novelty was assessed as the potential

to create new knowledge in the microbiome field and operationalized as the lack of

research papers about the specific question. For example, Does consuming bone broth

improve digestion? was rated as both insightful and novel, while, Can microbiome cure

cancer? was neither insightful nor novel. Broad questions related to well-studied topics

or those fishing for links with the microbiome, such as the difference between generic

vegetarian and meat-based diet were not deemed novel. A question was considered

creative if it suggested an interesting idea without necessarily drawing it from personal

experience.

Table 4.2: 344 participants completed the baseline exercise, continuing to the condition-
specific intervention (Learn, Train, Both, or Neither). Participants with both learning and
training generated a significantly larger number of question points than the other three
conditions

No Learn Learn

No Train 25.5 question points from
(13 of) 91 people (M= 0.28)

31.5 question points from
(14 of) 90 people (M= 0.35)

Train 26.5 question points from (7
of) 74 people (M= 0.36)

50 question points from (16
of) 89 people (M= 0.56)

Results

344 participants completed the baseline exercise, continuing to the condition-

specific intervention (Learn, Train, Both, or Neither). Participants who asked follow-on

questions were scored as described above; those who did not were scored as 0. Table 4.2

shows, for each condition, the total number of participants, the number that provided

questions, the total question points, and the average score across all participants. The

overall quality of the questions generated in the combined Train+Learn condition is the
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Figure 4.6: Training improved the overall question quality (p <.05) but learning did not
(p < 0.1). H1: Training marginally improved question structure (p <.06). H2: Learning
improved question content (p <.05).

highest (0.56 points) and appears to stand out from the others. We used a permutation

test (a kind of bootstrapping method) to assess the statistical reliability of this appar-

ent interaction, namely, whether the combined Learn-Train condition produces better

questions than is expected from the independent main effects of the Learn and Train

conditions. Indeed, a permutation test with 10,000 replications found that the observed

differences in question points are different than the expected differences (generated by

the main-effect marginals) as they fall outside the 95% confidence interval [-24.5, 24.5],

p<.05. The three score components (structure, content, and creativity) were pairwise

weakly correlated (r=0.32, p< 0.02; r=0.19, p< 0.17; r=0.33, p< 0.01).

Total question points: Training improved overall question quality (M=0.31, vs.

M=0.47); a permutation test with 10,000 replications found that the observed difference

in question points are different than the expected differences as they fell outside the 95%

CI[-19.5, 19.5], p ¡.05. Learning did not improve overall question quality (M=0.32, vs.

M=0.46); a permutation test with 10,000 replications found that the observed differences

in question points are not different than the expected differences as they did not fall

outside the 95% CI[-29.5, 29.5], p < 0.1. (Figure 4.6)

Structure: H1: Did access to training material (Train and Both conditions) improve
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the structure of questions relative to not having access (Learn and Neither conditions)?

Training marginally improved question structure (M=0.21, vs. M=0.29); a permutation

test with 10,000 replications found that the observed difference in question structure

points are different than the expected differences as they did not fall outside the 95%

CI[-9.5, 9.5], p <.06.

Content: H2: Did learning material (Learn and Both conditions) improve the

content of questions relative to not having access (Train and Neither conditions)? Learn-

ing improved question content (M=0.06, vs. M=0.11); a permutation test with 10,000

replications found that the observed difference in question content points fell outside

the 95% CI[-9, 9], p <.05.

Creativity: Did training or learning material (Learn and Both conditions) impact

the creativity score of questions relative to not having access (Train and Neither condi-

tions)? Neither training (M=0.04 vs. M=0.07; 10,000-replication permutation test 95%

CI[-4, 4], p < 0.08) nor learning (M=0.05 vs. M=0.07; 10,000-replication permutation test

95% CI[-4, 4], p < 0.2) improved the creativity score.

Table 4.3: Examples of questions created by participants

Quality Sample Question

High Have you ever eaten raw pumpkin seeds to eliminate para-
sites? (Structure: 2, Content: 1, Creativity: 1)

Medium Do you get constipated when stressed? (Structure: 2, Content:
0.5, Creativity: 0.5)

Low Does day of the week influence good vs. bad microbiota?
(Structure: 1, Content: 0, Creativity: 0)
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4.5 Discussion

4.5.1 The effect of learning and training on questions

As a check of random assignment, participants’ required pre-intervention ques-

tion was of comparable quality in all conditions. Participants in the Both condition

scored higher total question points after the intervention. Training en-forced a tutorial

when asking a question, and the add-question module presented heuristics for asking

better ques-tions. This tight integration may have enabled people to focus their questions

on a specific topic and frame their questions to be answerable by others. Moreover,

the presence of learning material might have provided a useful setup and improved

participant engagement leading to greater number of questions, and question points.

The study found a significant effect for learning on content ratings and a marginally

significant effect for training on structure ratings. This asymmetry could be substantive:

that learning improves content, but training only lightly improves structure. Alterna-

tively, it could be a statistical mirage: the lower inter-rater reliability for content might

show an effect if there isn’t one. Inter-rater reliability was higher for structure (M=0.65;

95% CI[0.59,0.69] (F (328,656) = 6.59, p < .001)) than content (M = 0.11; 95% CI[0.04,0.18],

(F (328,656) = 1.37, p <.001)). We hypothesize that content learning more clearly helped

because domain knowledge provided insights and, potentially, ideas for questions,

whereas the benefits for training heuristics were less clear. Some participants mentioned

that understanding the learning material deeply wasn’t their goal, which is corroborated

by our experience designing and building the notes feature. Pilot feedback led us to

create a time-annotated collaborative notes section alongside lecture videos. People

could add notes about the lectures, raise clarifying questions with specific points in the

video and answer others’ questions. Collaborative, time-annotated notes below lecture

videos have shown to improve social interaction and learning [109]. However, people
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hardly used the notes features. After limited uptake, we removed these notes.

Participants watched 2.5 of 15 lectures on average. Moreover, in the Both condi-

tion, the combination of training and learning materials might have provided both useful

content and sufficient structure for novices to utilize well. These results suggest that

citizen scientists improve their work when presented with specific, just-in-time training.

Self-guided question improvement may be valuable more broadly, as poor questions

and question bloat are common problems in many social computing systems [173].

4.5.2 Which topics did the questions deal with?

The best questions had three features: they shared a clear insight from the par-

ticipants’ life (frequently elaborated upon in the discussion section of the question),

enabled others to answer them from their lifestyle, and linked to known microbiome

research (Table 4.4). Common question themes included probiotics; fermented foods; the

consumption of fruits and vegetables in different forms; medicine usage; activities like

exercises; stool quality & consistency. The three most popular lectures viewed discussed

diet, antibiotics, and probiotics, hinting that either people were inspired by the lectures

or at the very least, the lectures may have satisfied some of participants’ curiosity about

the links between their lifestyle and the microbiome. 50% of participants with learning

mentioned that the lectures influenced their questions. Personal health was a big moti-

vator; 78% of questions pertained to diseases (e.g., Irritable Bowel Syndrome), general

health and well-being (obesity) or medication. 90% of survey respondents were moti-

vated by personal health to ask questions. People created questions that linked activities

with observable results (e.g., evacuation of bowel before colonoscopy with frequency

of bowel movements after the procedure), but also raised questions that were driven

more by curiosity about the microbiome: these questions inquired about their American

Gut results, or the effect of a certain lifestyle choice (e.g., fasting) on microbiome, or
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microbiome’s effect on health (e.g., anxiety). 37% of all questions contained “hypotheses”

i.e. they identified relationships between clearly identified variables (e.g., “Does eating

probiotic foods reduce sugar cravings?”), while 46% only contained curiosity about

the microbiome (e.g., “Hydrocolonic therapy change gut microbiome?” [sic]). Some of

these questions were difficult even for experts to answer, since they are topics of active

research (e.g., brain-gut axis [119]).

4.5.3 How novel are the questions?

75 of the 399 questions were found to be novel by the American Gut Project

researchers. Novelty was defined as “Is there a chance the world will learn something?”

The probiotic-sugar question above is novel because no published work addresses it

directly. Other work on the sugar-microbiome relationship establishes plausibility [69].

Such questions meet Docent’s primary objective: to uncover insights about topics where

people’s lived experiences provide them more knowledge than lab experts. Docent-

like citizen science platforms can leverage people’s lived experience to identify novel

questions that experts have missed out and to evaluate these questions.

4.5.4 Emergent behavior, engagement, and growth

Docent offers more avenues for active collaboration than traditional web fora.

People can create questions, answer and edit questions, create follow-ups, and guess

potential mechanisms. Participants added a total of 2424 answers, 74 follow-up questions,

466 new options and 358 mechanism/ discussion comments. Discussion comments fell

into three types, sorted by popularity: (a) sharing personal insights; (b) sharing potential

mechanisms for the question; and (c) providing links to related online resources. People

edited others’ questions 119 times. Most edits were done by leaders and collaborators
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Table 4.4: Distinct roles emerged as people added, edited, and answered questions

Role Actions

Leader Add questions, answer & edit others’ questions, add follow-
ups, discuss

Helper Add & answer questions, add follow-ups

Participator Answer questions

Lurker Add questions but no collaborative work

Dropout Add a question; never return

who attempted to clarify the question. None of the edits were reverted by the authors

hinting that the edits were acceptable to them. Different ways to contribute creates

different informal roles and behavior patterns in social computing systems, from leaders

who perform all the activities to lurkers who may watch but not actively engage in

collaborative activities (Table 4). Figure 4.7 shows the work distribution by roles in the

Both condition.

Figure 4.7: Distribution of role types for the 68 participants in the Both condition who
added at least one question. The Leader formed 1% of participants but contributed
19% of the answers and 49% of all collaborative activity (adding follow-ups, editing
others’ question, adding options). Dropouts formed 65% of participants and added one
question each (57% of all questions) but contributed to only 13% of collaborative work.
.

Prior citizen science platforms have demonstrated lurker and dabbler behav-

ior [50]. Since people perform work on citizen science platforms, they require a promi-

nent “circuit of engagement” [143]. Systems research comprises many choices; some we
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evaluate, others follow from prior work, & some are hunches. To counter lurker behav-

ior, Docent employs three techniques: First, Docent encourages members’ self-selection

using a strategy that hides Docent’s content (lectures, training, and the GutBoard) until

people add one question. Making even small contributions makes people feel more

vested in the effort as a part of a community and removes their fear of performing

a novel activity [138]. Extending these ideas can be useful for future work. Second,

the GutBoard’s continuous question updates provides social translucence [138]. Third,

Docent sends regular email and social media updates to engage the community.

From Asking Questions to Building a Community

Docent’s 20 email templates cover three areas: 1) user-activity specific e.g., re-

minder when someone added a follow-up question to a user’s question; 2) condition-

specific e.g., weekly emails about activity on the platform for the user’s condition; 3)

general reminders e.g., creating a username, or adding a question if participants had not

done so already. Activity emails were sent each time a user’s question received an edit,

follow-up question, option, discussion comment, or when experts starred the question.

Docent sent weekly general updates and links to tutorials.

A renowned microbiome expert recorded answers to popular questions which

were subsequently mailed to participants and uploaded on social media channels. Do-

cent maintained an active profile on Facebook and Twitter (240 and 224 followers

respectively) by providing updates about platform activity, researchers’ feedback on

people’s questions, and microbiome-relevant scientific articles and studies. Despite

attempts to engage people, Docent saw high dropouts. Of 1630 participants, 907 (55%)

took up usernames; and 344 participants (21%) added at least one question.
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Two Optimizations Significantly Improve Scaling

To efficiently handle hundreds of participants, Docent initially renders only the

first two questions while the remaining questions are rendered in the background.

Docent also reduces page load times by storing markers in the browser’s local storage

for frequently accessed details, e.g., last-seen question. This enables Docent to fetch and

show the next question on subsequent login rather than having to pull all questions and

then traverse to the last-seen question.

4.5.5 Diversity & social behavior

Of the 344 participants who added a question, 219, who provided location infor-

mation, hailed from 27 countries. 174 participants (80%) were from US or UK who asked

76% of questions. This is not without reason —Docent’s online publicity was focused on

the American Gut Project and its offshoot the British Gut Project. However, people in

these countries may have higher socio-economic, educational, and technological status

than the average global (or even, national) citizen (80% of our survey respondents had

at least an undergraduate degree; an American Gut Project kit costs $99). MOOCs face

a similar challenge: educated and affluent learners complete online classes at higher

rates [91]. Science and humanity will likely benefit from diverse global participants [72],

as in Lab in the Wild [136].

Diversity brings another design challenge. Diverse participants interpret prompts

like Likert scale differently. People might also use terms that are not obvious to others.

For instance, one participant asked about the frequency of “hoovering your home”

which likely was lost on some participants. Since Docent participants hail from dozens

of countries, terms need to be understood broadly. Participants could potentially flag

such questions for clarification.
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Willingness to share private information: Only 6% of survey respondents said they

did not feel comfortable sharing personal insights. This is promising; however, there

were questions that some may feel embarrassed to answer — e.g., questions pertaining to

bowel movements, flatulence, and sexual activity. For these cases, questions and options

can be rephrased — e.g., “Do you suffer from bouts of flatulence?” can be changed to “In

the past week, how often have you suffered from flatulence?” enabling people to provide

some useful information rather than entirely avoiding such questions. Moreover, specific

communities’ motivation can be focused on generating specific insights [23]. Docent

already has many questions raised by participants suffering from different ailments;

such patient groups may have specific insights as well as greater motivation to share

them in exploratory projects [79].

Different strokes for different folks: Docent users were volunteers. Multiple survey re-

spondents mentioned that busyness impeded their platform usage. We hypothesize that

encouraging moderators may increase platform stickiness. We plan to create guides and

have people try different roles which can boost creative thinking [154]. With a diverse

participant set — health-hackers, MOOC learners, even some advanced microbiome

students — people’s attention can be put to specific tasks that they want to contribute

to. For instance, MOOC learners may be more interested in unearthing mechanisms for

people’s hypotheses. Such differentiated roles, including different levels of editor, have

contributed to the success of social computing systems like Wikipedia [99].

Validating hypotheses shared by participants: One early benefit of our work is that

American Gut researchers are using the best Docent questions to potentially add/revise

the metadata catalogue in the American Gut Project. Moreover, with the right online

support, citizens can design and run experiments to test some of the hypotheses (e.g.

probiotics reduces sugar cravings). Scaling causal reasoning could transform many

domains. One interested party is the non-profit Open Humans platform where people
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volunteer their personal data (e.g., microbiome/genomic data) and provide access to

researchers to use their data.

This chapter investigated integrating learning and training with online scientific

work. Experts rated 75 of 399 questions as potentially scientifically novel. Participants

with access to process training generated hypotheses of better quality. Access to learning

materials improved the questions’ microbiome-specific knowledge. The Learn-Train-Ask

method can be applied towards next steps in the scientific process, namely designing

and running experiments. This study also illustrates the challenges of designing a

social computing system that engages voluntary participants in performing personally-

relevant scientific work. Such online experiences also naturally provide a problem-based

learning setup for better learner engagement. Intui-tions gathered from a large online

crowd can significantly scale up scientific inquiry by augmenting scientific expertise with

insights and know-how drawn from the lived experiences of diverse individual people.

We believe that dual-objective online systems that combine learning with personally

meaningful work can enable people to meet their needs.

This chapter, in part, includes portions of material as it appears in Docent: Trans-

forming Personal Intuitions to Scientific Hypotheses through Content Learning and Process

Training by Vineet Pandey, Justine W. Debelius, Embriette R. Hyde, Tomasz Kosciolek,

Rob Knight, and Scott R. Klemmer in the proceedings of the ACM Conference on Learn-

ing at Scale (L@S 2018). The dissertation author was the primary investigator and author

of this paper.
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Chapter 5

Collaboratively Running Experiments

People have creative scientific questions and folk theories; yet most lack the expertise
to investigate them. How might people transform their questions into experiments
that inform both science and their lives? This chapter introduces the Galileo sys-
tem; it provides procedural support using three techniques: 1) experimental
design workflow that provides just-in-time training; 2) review workflow
with scaffolded questions; and 3) automated routines for data collection. We
present three empirical investigations: a between-subjects experiment with
students, a study with online volunteers across 16 countries, and a deploy-
ment with online volunteers across 8 countries. Procedural support yielded
higher-quality experiments than watching lecture videos. People generated
structurally-sound experiments on personally meaningful topics and ran
them with participants from around the world.

Figure 5.1: Galileo enables anyone to design and run experiments to test their intuitions.
Experiment creators can invite anyone to review and participate in the experiment.
Participants from around the world join experiments, follow instructions, and provide
data in response to automated data collection reminders.
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5.1 Experience to Experiments: Self-tracking Offers In-

sights but Not Causality

People have questions about their health, but lack the expertise and resources

to scientifically investigate them. These concerns are especially acute when multiple

factors interact. Despite knowledge gained from lived experiences, people lack the

procedural tools to gain the causal knowledge they seek. Many self-tracking efforts

suffer from structural flaws that prohibit people from actually learning what they’d like

to know [30, 112]. A frequent error is mistaking correlation for causation [124]. People

falsely believe that when one event follows another, the initial event is the cause: post-hoc

ergo propter hoc. At the same time, professional science suffers from structural biases.

By creating controlled experiments (as opposed to tracking oneself), people can test

their intuitions at a larger scale, potentially unearthing novel results. How can we train

people in designing and running experiments to answer their personally-meaningful

questions?

Scientific experimentation features technical requirements and contextual choices

that are inscrutable for a lay individual yet necessary for success [118]. While profes-

sional scientists and commercial ventures run experiments every day, with notable

exceptions [34, 111], empirical papers from non-professionals are vanishingly rare. This

biases the questions asked, studies run, and knowledge created [38, 72]. People have

questions about their health, but lack the expertise and resources to scientifically investi-

gate them. Broadening the pool of experimenters could help people investigate their

curiosities, develop solutions to improve health and performance, and assist institutional

researchers.

The main contribution of this chapter is demonstrating that online volunteers can

collaboratively perform scientific experimentation. It does so in two main ways: 1) procedural
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support for acquiring domain expertise using three techniques: experimental design

workflow that provides just-in-time training, review with scaffolded questions, and

automated routines for data collection; and 2) the Galileo social computing system that

instantiates procedural support for citizen experimentation (Figure 5.1).

Three empirical investigations tested Galileo’s approach. First, a controlled

between-subjects experiment with 72 participants found that procedural support yielded

significantly higher-quality experiment designs than lecture videos. Second, a deploy-

ment across 16 countries found that people generated structurally-sound experiments

on personally meaningful topics. Third, in a field deployment, online users from three

communities—kombucha, Open Humans, and beer—across 8 countries demonstrated

that people designed, iterated on, and ran week-long experiments.

5.2 The Galileo Experimentation Platform

Galileo introduces a system for end users to design experiments, get them re-

viewed, and run them with interested participants. It provides procedural support

for these steps, an online collaboration platform, and automated data collection and

reminders.

Despite a predetermined goal and a formalized process, experimentation requires

making contextually-appropriate decisions [118]. Good experiment design is inherently

user centered; designers need awareness of others’ interpretation of their ideas and asks.

Providing feedback on experiment designs requires knowing the success criteria and

how to help improve.

Finally, successfully running an experiment requires managing multiple processes

such as random assignment, anonymizing participant details, and sending instructions

and reminders for data collection.
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Figure 5.2: Galileo’s design module helps people transform intuitions into experiment
designs. It walks people through 1) converting an intuition to a hypothesis, 2,3)
providing ways to manipulate/measure cause and effect, 4-5) specifying control and
experimental conditions, and (not shown) providing inclusion/exclusion criteria.

5.2.1 Design-Review-Run: From intuitions to investigations

Galileo requires three roles for each experiment: designer, reviewer, and par-

ticipant. Galileo offers procedural support for each: 1) a design workflow provides

just-in-time training, 2) review with scaffolded questions, and 3) automated routines for

runtime activities like data collection. Users form and refine with the help of contextual

support and learning resources from the system.
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5.2.2 Design an experiment from an intuition

People have many, often poorly-framed, hypotheses. Galileo’s design workflow

helps people harvest and sharpen them (Figure 5.2). Examples illustrate possible choices

and how they relate; templates provide structure; and embedded videos explicate

technical issues. Such procedural support can improve on-task performance [132]. A

final self-review step provides an overview of the experiment. To keep the platform safe,

the primary author receives daily updates of platform activity. The design workflow

does not mandate double-blindness or the use of placebo; designers can choose to specify

these details.

Figure 5.3: Reviewers walk through an experiment providing binary rubric assessments.
A No response prompts reviewers to provide concerns and suggestions.

5.2.3 Review the design via feedback from others

Galileo experiments require at least two reviews before they can be run. The

designer invites the reviewers, who might be online community members, a teacher, or

anyone else who can provide useful feedback. Upon receiving reviews, the designer

edits the experiment to address any issues. For research purposes, Galileo logs version

changes. Reviewers provide both binary assessment and written responses to specific

questions (Figure 5.3). These questions cover structure (e.g., accounting for confounds),

pragmatics (e.g., measuring the real-world cause/effect), and participant experience (e.g.,
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data reminder time). Reviewers are ineligible to be participants in the same experiment.

Similarly, creators may not review their own experiment.

Figure 5.4: Join workflow for participants. 1) Participants can view a list of experiments.
When they elect to join one, they 2) answer inclusion/exclusion criteria, 3) consent to
following the provided steps, and 4) receive instructions. Participants receive daily,
condition-specific requests, and respond with data and/or clarifying questions.
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5.2.4 Run an experiment using procedural support

To launch an experiment, its designer shares a unique URL with potential partici-

pants. Galileo automatically manages four activities to reduce bias and workload:

1. Randomized placement of people into conditions [118].

2. Maintain a per-experiment participant map ([usernames]→ [exp id]) for anonymity

3. Collect and clean data (sending data collection messages and reminders at time

zone appropriate times, parsing the responses, updating participant and experi-

menter views).

4. Prompt experimenters to perform tasks when conditions are met (e.g., setting the

start date when enough participants have joined or reminding participants with

missing data).

Participation comprises following instructions (e.g., drink kombucha) and provid-

ing self-report responses to platform queries (Figure 5.4). The current implementation

supports email, SMS, and WhatsApp. Self-reports provide the primary data collec-

tion mechanism. Participants can optionally answer follow-up questions that capture

contextual insights. Galileo logs responses to a MongoDB database. Galileo presents

participant data to experimenters using participant ID rather than real name or username.

When the experiment ends, participants receive a summary of results. Participants can

anonymously discuss the experiment at the end, so the experimenter can learn from

their feedback.

The experimenter’s dashboard lists tasks: answer clarifying questions, remind/thank

participants, or look at trends in data (Figure 5.5). Experiments have a minimum partici-

pation count; there’s no upper limit to the number of participants. People who sign up

after a cohort begins are added to a waitlist. The Galileo web application uses the Meteor

71



(meteor.com) framework for synchronization, Jade for the front end (jade-lang.com),

Materialize for styling (materializecss.com), and Twilio as the text message gateway

(twilio.com).

Figure 5.5: Galileo takes care of many experimenter responsibilities such as random
placement of people, sending instructions and reminders, and cleaning and displaying
data in both participant and experimenter dashboard. The dashboard enables experi-
menters to A) remind those with missing data; and B) see participants’ data; and clarify
questions raised by participants.

5.2.5 Designing the platform

More than 80 people have designed and run experiments. The system design

evolved over a year of weekly in-person user-centered studies with lead users from

different communities including kombucha and self-tracking enthusiasts. The pilot study

gathered feedback on the usefulness of the interface items and resources. Students in an

undergraduate Psychology class (Introduction to Research Methods) also used Galileo in

a 90-minute classroom deployment to rapidly design and review each others’experiments

and receive feedback. We provide three examples of how pilot studies informed Galileo’s

design:

1. Embedded written training over videos: Early versions provided short, online lecture

videos as the learning materials. Most users did not watch them end-to-end to
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extract the step-relevant insight(s). In response, each step’s content now offers

written examples, which are easier to skim and refer back to.

2. Supporting actionable feedback: For the review interface, early versions only re-

quested binary Yes/No responses similar to popular crowdsourcing platforms;

both experiment designer and reviewers found this to be unsatisfactory. Galileo

now provides a prompt for actionable feedback whenever the reviewer selects

”No” to any question.

3. Ease of glancing at participants’ data: Pilot users ran six trial experiments. The

idea of a runtime dashboard (Figure 5.5A) came from observing experimenter’s

difficulty tracking participants’ data and sending reminders to those who hadn’t

added their data. Participants struggled with making suitable preparations for

a week of experimentation (e.g. buying sufficient kombucha). The system now

prompts experimenters to explicitly add preparation instructions that are sent to

participants 2 days before the experiment begins.

5.2.6 Integrating procedural support in the design workflow

Simple examples of procedural learning are activities like tying your shoes, roast-

ing a chicken, or replacing a door handle. Recipes and instructions convey procedures in

written form; demonstrations and hands-on learning make it more interactive. Creative

tasks differ from rote procedures in that they require people to generate some artifact

themselves.

Embedding Just-in-Time Support

Complex activities overwhelm learners’ working memory because of their many

interrelated pieces [48]. Recalling work from previous steps and frequent context-
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switching are especially taxing [63]. Experts mitigate memory demands by integrating

multiple elements into conceptual chunks [24]. A well-chunked interface can still require

knowledge that novices lack. Galileo provides missing knowledge by providing learning

materials in the interface. This in-situ embedding has three advantages: it is minimal [22],

leverages teachable moments [70], and can be ability-specific [35]. Finally, as is good

user interface practice, selecting good defaults for each step helps users see an example

of appropriate choices.

Early Galileo users sometimes made poor choices, like listing effects that are

difficult to measure. To help guide people, Galileo now presents a short checklist

for verifying the choices made in each section. This self-review provides lightweight,

just-in-time support.

Example: Training people to identify a cause

Controlled experiments seek to identify develop causal understanding by varying

just the cause in experimental conditions. Many people do not understand the impor-

tance of having this minimal-pairs design, perhaps because they do not have the same

issues in mind when thinking about the cause as when thinking about the conditions.

Galileo administers the following process to help designers select conditions

that test a causal claim. It provides a simple description in common English with 3

examples showing the data collection reminder text and times right after the designer

decides on the cause and effect metrics. Galileo auto-populates text reminders with

readable sentences [110] that people can edit. Finally, checklists help people review and

improve their work. Such checklists refer to more context-specific challenges of making

the experiment simple, safe, and comfortable for participants.

Three studies evaluated Galileo’s approach: a controlled experiment to test proce-

dural support’s efficacy in the design workflow; a field study to test whether people can
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create structurally-sound experiments based on personal intuitions; and a deployment

to test whether people can design and run experiments.

5.3 Study 1: Experiment Comparing Procedural Support

to Videos

To investigate whether procedural support helps novices design experiments, a

between-subjects experiment tested the following hypothesis: Procedural support yields

higher quality experiment designs than lecture videos.

Procedural training, when successful, helps people solve unique problems with

similar structure. It is perhaps best studied in K-12 mathematics instruction [141].

We hypothesize that participants who use interactive procedural support create better

experiment designs than those who watch videos on the topic.

Method

Participants were randomly assigned to one of two conditions: Videos or Galileo

(Figure 5.6). The Videos condition provided a playlist of videos about experiment design

from a Coursera MOOC that operationalized the task-specific concepts [171]. The Galileo

condition provided participants access to Galileo. Both provided the same content

for creating a structurally-sound experiment. Moreover, participants were provided

instructions that the resources (videos/Galileo) described the attributes that their designs

should possess. Scripted study instructions ensured the same manipulation.

The study asked participants to compose an experimental design for a personal

intuition of their choosing. Each condition provided informational resources and a

means to document their design (videos with a text document, or procedural support
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Figure 5.6: Two conditions for experiment. In the Videos condition, participants accessed
videos about experiment design. In the Galileo condition, participants accessed Galileo
tool (which included the videos if participants wanted to see them). Both conditions
provided the same content.

with inline text fields). Participants were told that there was no lower or upper time limit.

Each session comprised the following steps: consent, design task, survey, and interview.

Participants could also use web resources— such as Wikipedia—and many did. The

interview asked participants about confidence in their experiment design abilities and

their experience using the system. The interview was tailored to participants’ behavior

and survey responses: for example, if a participant did not watch some videos, the

interviewer asked why. An independent rater (a professor who teaches experiment

design) blind to condition rated each participant’s experiment using the rubric (Table 5.2).

Participants

Recruitment: 72 participants were recruited from a Western US Research University

(Table 5.1). 11 had no prior experience with experiment design; 61 had taken a course or

equivalent. Expertise was counterbalanced across conditions.
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Table 5.1: Demography information for 72 participants (all undergraduate students).
Some participants did not complete portions of the survey.

Nationality USA=37 China=11

No Answer = 6 Others = 18

Gender Female = 47 Male = 24

Native English Yes = 38 No = 34

Age 18-20 = 40 26-30 = 1

21-25= 31

Ethnicity Asian/Pacific=36 Hispanic/Latino=14

White = 11 Others=11

Major Biology=12 Psychology=20

Cognitive Sci=12 Others = 20

Used online Never=28 Occasional=16

learning 1 class=11 2-5 classes=12

Measures

The independent variable is access to Galileo/videos. The study scored experi-

ments via a 13-question rubric (Table 5.2), and recorded time taken. A blind-to-condition

expert (a regular instructor of large, undergraduate courses on experiment design) pro-

vided the scores. Qualitative measures included how participants used the tool, where

they faced challenges, and a post-experiment survey. A non-parametric Mann-Whitney

test assessed the effect of condition on design quality.

5.3.1 Access to Galileo improved the quality of experiment design

Galileo participants created higher-quality experiments (M = 11.3) than Videos

participants (M = 5.6); Mann–Whitney U = 108, n1 = n2 = 36, p < 0.005 (Figure 5.7). Of
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Table 5.2: Rubric for design-quality criteria for structure

Hypothesis: 3 points Is the cause/relation/effect specific?

Measurement: 2 points Are the cause and effect manipulated/measured
correctly?

Conditions: 3 points Are the control and experimental conditions ap-
propriate? 2 points

Do the conditions differ in manipulating the
cause? 1 point

Steps: 2 points Are experimental steps clear for con-
trol/experimental conditions?

Criteria: 2 points Are the exclusion criteria correct and complete?
Are the inclusion criteria correct?

Overall: 1 point Can the overall experiment be run as is?

the 36 designs rated in the top half, 29 were from Galileo condition. Galileo participants

performed better on five out of six sections (all except hypothesis). There was no

significant difference in the amount of time participants spent creating an experiment in

the Videos condition (M = 30.8 mins) vs Galileo (M = 29.0 mins) conditions; Mann–Whitney

U = 734, n1 = n2 = 36, p = 0.33 two-sided.

Discussion

As Galileo aims to improve tasks like experimental design, Study 1’s primary

dependent variable was quality (as opposed to learning gains). Online video resources

represent a common status quo: contemporary and bite-sized yet still static resources.

This comparison enabled us to observe how Galileo’s procedural support changed design

outcomes. Videos participants followed one of two strategies: 1) watch all the videos at

once and then begin writing the experiment; or 2) begin designing the experiment and

use the videos to fill in the gap when stuck. Like cramming, all-at-once watching floods
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Figure 5.7: Access to Galileo improved the quality of experiment design

the mind, perhaps making it difficult to use seen ideas [97]. By contrast, the search-when-

needed approach interrupts people’s flow, replacing the attention on design with a task

of locating needed information. Videos’ lower score and our observations, in conjunction

with the literature, suggest contextually-integrated approaches like procedural support

increase people’s useful adoption of information.

Participants reported that the videos were slow and the interface provided suf-

ficient examples. Participants in the Galileo condition opened and closed the videos in

quick succession. Participants in the Videos condition, however, felt that the videos pro-

vided a refresher of some concepts they vaguely knew about. Did too much information

(e.g. the inclusion of other concepts) in the Coursera course dilute performance? It’s

possible; accessing the ”right” moment in videos is a known research question [85].

Participants in both conditions expressed a lack of confidence in their chosen

cause/effect measures. Some spent over 15 minutes searching for measures: one found
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a formal sleep-quality scale from Stanford researchers. Participants in both conditions

mentioned that they enjoyed reflecting on their lifestyle/health ideas and thinking

through how to transform an intuition into an experiment. Participants wished that

Galileo was integrated with their class, describing it as ”hands on” and ”DIY”.

Limitations

This experiment found procedural support to yield higher-rated designs than

watching videos. Important direction for future work will be to compare different

approaches to procedural support, and exploring additional measures (e.g., novelty).

5.4 Study 2: People Design & Review Experiments On-

line

The first study evaluated the efficacy of procedural support for designing experi-

ments. The second study investigated the quality and nature of experiments; specifically,

whether people a) create experiment designs that are structurally-sound, demonstrate

insights from lived experiences, and have novel ideas, and b) provide useful feedback

on experiment designs.

Method

Participants used Galileo to design their experiments and review others’. Galileo’s

landing page described why experiments are important and the importance of citizens’

contributions towards making discoveries. Upon logging in, participants could design

an experiment (see Figure 5.2), review existing experiments (see Figure 5.3), or join an

experiment (see Figure 5.4).
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Recruitment

Participants were recruited via online publicity. One recruitment focus was people

curious about the microbiome because it is a domain where lived experience may inspire

intuitions, and the science is nascent [121]. Galileo was promoted on the American Gut’s

and their collaborators’ Facebook and Twitter pages. Galileo was added as a project on

Open Humans (openhumans.org), posted on multiple subreddits pertaining to health

and lifestyle, and introduced as an optional activity in assignments on the Gut Check

Coursera MOOC [93]. Participation was voluntary and unpaid.

Table 5.3: Rubric for design-quality criteria for Structure, Content, and Novelty

Structure Described in Table 5.2

Content

Personal? Did the hypothesis draw from lived experience?

Popular? Is the world already curious about this hypothesis (e.g.
discussions on online fora)?

Insightful? Does the hypothesis link to existing science?

Novelty Is there a chance the world will learn something: ab-
sence of published research for this question?

Measures

Measures comprised structure, content, and novelty of experiment designs (Ta-

ble 5.3) and usefulness of reviews. Raters with training in experiment design inde-

pendently rated participants’ work, then discussed them to form a shared view of

assessment. Next, each independently rated all experiments. The final score is the mean

of their independent ratings. Moderate reliability was found between the two raters’

measurements [96]; m(ICC) = .62, 95% CI [.45, .75], (F(64,64)= 4.33, p<.001.
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Structure measures whether the design is correct and includes appropriate com-

ponents. Content measures the subject matter of the idea driving the experiment design;

it was rated as personal focus, popularity, and insightfulness of the hypothesis. Novelty

was assessed as the potential to create new knowledge and operationalized as the lack of

research papers about the specific hypothesis. Raters were instructed to assign points for

a component (say hypothesis) if the experiment provided appropriate details about it.

For example, the hypothesis Text message reminder increases consumption of recovery snack

was rated to have a specific cause, a specific effect, and a clear relation between the two,

while Eating too much energy causes disturb [sic] sleep cycle did not have a clear cause or

effect. Ingesting non-local food results in poor evacuation of fecal matter ” was rated as novel

because no published research addresses this (as per Google Scholar). Broad or vague

hypotheses related to well-studied topics were not deemed novel (e.g. Going to college

increases grades).

54 users from 16 countries created 66 complete experiment designs (Mdn=27

minutes). 37 users provided 205 descriptive review comments. Latest versions of

complete experiment designs were scored as described above; incomplete experiments

and older versions were removed from analysis.

Results

5.4.1 People design structurally-sound experiments, and draw from

personal intuitions

The mean score for the experiment was 10.3/13. On average, people scored

higher than 75% on 8 of 13 measures. 38% of experiment designs came for people’s lived

experiences; e.g., eating yogurt makes a person have a more regular bowel movement. Personal

health and performance were big draws: 90% of experiments sought to improve a health
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outcome.

Figure 5.8: A) Most experiments were structurally-sound, scoring high on the structure
rubric. B) Most experiments drew from personal experiences

51% of the experiments were rated as popular; their hypotheses were discussed

on other online fora; e.g., having dry mouth (or Sjogren’s Syndrome) promotes the growth

of less beneficial gut microbes. Common themes included diet (dietary styles, alcohol,

fermented foods), technology use (social media, laptop, mood) and alternative treat-

ments (homeopathy), and health (sleep, pain, gut issues) (Figure 5.8). Apart from being

structurally-sound, the best experiment designs shared two features: they shared a

personal experience and linked to known research. For example, a user designed an

experiment to test yogurt’s effect on bowel movement and shared their motivation:

“For several months I have been producing Yogurt. This is fermented using commercial

probiotics, Probiotic-10. My intuition was that since various microbe species were active in the

making of the yogurt, this product can help relieve of the various digestive problems one persona

can have. It happens that one of my sons was diagnosed with Ulcerative Colitis. among other

things he was losing weight rapidly. After several weeks of consuming probiotics and/or the

yogurt, he begun to recover.”

17% of hypotheses had novel insights that no published research addresses. For

instance, Avoiding foods high in lectins cures long-term post-infectious diarrhea and Drinking
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kombucha regularly reduces joint inflammation/arthritis symptoms are both hypotheses of

interest to citizens and microbiome researchers alike.

Figure 5.9: Summary of review A) Review comments were broadly distributed across
all components of experimental design. B) Review comments ranged from 3 chars
”yes” to 871 char long descriptions. C) The longest review comment described mul-
tiple problems with an experimental design while providing numerous actionable
suggestions.

5.4.2 Reviewers use domain knowledge to improve designs and ad-

vocate for participant experience

158 review comments (77%) were rated useful; incorporating them would im-

prove the experiment. Average comment length was 140 characters ranging from 3

characters (yes) to 871 characters (Figure 5.9B,C). Most comments were direct responses

to a rubric question hinting that the review interface helped people focus on the salient

parts of an experiment design.

The most common comments sought improving structural correctness (38%) by

requesting specific details. For example, one reviewer questioned an experiment’s choice

of Likert scale for mood saying, A simplistic Likert scale seems like a bad idea. There has

to be something better than this. At least a couple questions? Like, optimism, excitement,

depression, anxiety?. Reviewers provided the most comments (54%) about the hypothesis

and cause & effect measures. People advocated for improving participant’s experience

(18%). Suggesting better data collection messages and times was a popular theme. We
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present two examples: 1) People are not very good at remembering what they eat. Maybe an

App like MyFitnessPal would be useful since it would allow participants to track all the food they

eat without having to remember for too long, and 2) How long do they [experiment participants]

have to answer? What if they’re eating dinner and can’t get to it until 9pm?.

14% of comments demonstrated domain-specific knowledge E.g., one reviewer

pointed out a conceptual mistake about a Type-1 diabetes experiment: A1C is measured

monthly and won’t change after 1g. You mean the BG value? A1C refers to the average blood

glucose value average levels over the past 3 months that is less susceptible to short term

changes. BG here refers to the blood glucose value that depends on immediate glucose

intake (among other factors). Surprisingly, reviewers barely drew from their personal

experience when suggesting improvements (or at least, did not explicitly mention this

was their personal experience). Some comments drew on counterfactual reasoning

while thinking about how participants might ”hack” an experiment. A comment on an

experiment about social media use and steps walked asked, . . . the timing of this [reporting

steps taken] vs. social media use measure is off and that makes me worry about intervening use

throwing things off (e.g. “phew! I’ve reported my facebook for the day, now I can go use it”?)

5.5 Study 3: People Design, Review, & Run Experiments

The previous two studies found that people generated novel, structurally-sound

experiments. Might they successfully run experiments with others? Participants from

three communities—Kombucha, Open Humans, Beer—designed and ran experiments

(Figure 5.10).

Does drinking Kombucha improve stool consistency? Kombucha is a fermented

tea drink popular in many parts of the world. Fermented foods (miso, yogurt, ayran,

kefir) have been a staple in many cultures for thousands of years [28]. While there is
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widespread belief that kombucha “benefits the gut”, there is little published empirical

evidence for these claims [49]. The experimenter hypothesized that kombucha sup-

plies beneficial probiotics that help maintain normal stool consistency, and designed a

between-subjects experiment.

Figure 5.10: Three communities—Kombucha, Open Humans, Beer—designed and ran
experiments; each ran for a week. The flags represent participants’ nationality.

Does reducing social media time increase optimism? Open Humans enables

people to contribute personal data (e.g., genetic, social media, activity) for donation to

research projects (openhumans.org). An experimenter investigated the relationship be-

tween social media and mood. Curious about the popular Facebook contagion study [37],

an Open Humans member (openhumans.org) created a between-subjects experiment to

investigate social media and optimism.

Does drinking a beer in the evening help people fall asleep? Some people

believe that a pint of beer in the evening helps them sleep by relaxing them; others think

alcohol disturbs their sleep [135]. Alcohol helps people fall asleep but disrupts the REM

cycle [47]. Still, it can be more convincing to see the evidence oneself. The experimenter

(a graduate student) tested the effect of beer on sleep time with a between-subjects
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experiment.

5.5.1 Before the experiment: Design, review, pilots, and finding par-

ticipants

From initial design to launch, 37 (kombucha), 13 (Open Humans), and 11 (beer)

days elapsed. Each experiment ran for a week.

Design and Review: None of the experimenters had previously designed and run

an experiment with people. All knew some concepts about experiment design; two

have PhD degrees (in biology and ecology) and one is enrolled in a Computer Science

PhD program. The experimenters are Brazilian, German, and US nationals. While the

three experimenters had lived experience of their experiment’s topic, they had never

scientifically studied it.

Reviewers provided a total of 104 boolean answers and 32 detailed comments.

Comments focused on two themes. First, reviewers helped make the hypothesis and

measures more specific; e.g., an experimenter started with the question “Does drinking a

beer in the evening help you get to bed on time?”; the reviewers nudged the experimenter to

creating the more specific hypothesis: “Drinking a 5% ABV (+-0.5%) beer between 6PM

and 8PM local time helps people fall asleep no more than 30 minutes past their desired bed time”.

A reviewer criticized Kombucha experiment’s 5-point Likert scale for bloatedness as

overly vague. In response, the experimenter found and adopted the Bristol stool chart—a

picture-based scale that is the industry standard [168]. Second, reviewers suggested

improving data quality by instructing participants to skip confounding activities. For

example, reviewers pointed out that caffeine and alcohol interact. The experimenter

addressed this in instructions asking participants to abstain from coffee and alcohol.

All issues that reviewers raised were tightly connected to Galileo’s review rubric (Fig-
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ure 5.3). At the end of review, the three experiment designs used appropriate measures,

provided a minimal-pairs design, tracked confounds, and provided appropriate criteria

for participation.

Pilots: Three lessons emerged. First, some participants were loath to look at

their stool. Since viewing one’s stool is necessary, the experimenter added an inclusion

criterion enforcing this. Second, some participants reported eating other fermented

foods in the process; the experimenter modified the instructions for participants to not

consume these. Third, after failing to recruit sufficient participants, the experimenter

collaborated with a kombucha fermenter in an American city who knew more kombucha

enthusiasts. Before testing for the effect of social media, an Open Humans member

piloted a study on the effect of 30 extra minutes of aerobic exercises on sleep. However,

potential participants were loath to alter their lifestyle this dramatically, and so the

experimenter abandoned the study.

Finding participants: The Kombucha experimenter publicized the experiment

on Instagram, Twitter, and newsletter; they also created a poster, and reached out to

enthusiasts in their city in Brazil and an American city. The Open Humans experimenter

recruited on social media, a mailing list, and the Open Humans Slack channel. The beer

experimenter reached out to peers interested in community experimentation and/or the

effects of alcohol. At least one potential participant in each of the three experiments was

excluded because of inclusion/exclusion criteria.

5.5.2 During the experiment: Retention and data collection

Retention: 57 people signed up for the kombucha experiment; 36 completed it

(68%). Retention rates were similar for the Open Humans experiment (63%) and higher

for beer (90%) (Figure 11). 78% of dropouts occurred in the first 48 hours. The reasons

participants reported for dropping out included lack of interest, holidays, and work
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Figure 5.11: Dropout and adherence Rates across the three experiments. After signing
up, a smaller fraction of people participated in Kombucha (68%) and Open Humans
(63%) experiments than Beer (90%). However, those who participated reported greater
adherence in Kombucha (92%) and Open Humans (83%) compared to Open Humans
(50%). Reasons for non-adherence included being busy, annual leave, and brewers
needing to check on the taste of Kombucha.

travel. Adherence: Kombucha garnered 76% adherence: 86% for days of no kombucha,

and 70% when asked to drink kombucha. Most Open Humans participants reported

high adherence, cutting social media use in half or more (Figure 5.11). Each day, an

average of 54% of participants in the beer experiment reported following the condition

requirement (drinking 1 or 0 beers by 8PM). 15 of 17 failed to comply on at least one day.

Some participants disclosed confounds and reasons for non-adherence. For

example, drinking alcohol was a reported confound, because it might affect kombucha’s

impact on the body. Similarly, participants’ non-adherence reports included scheduled

disruptions like travel and holidays and work responsibilities like brewers needing

to check on the taste of kombucha. Non-adherence for the beer experiment included

drinking wine rather than beer, drinking after 8PM, drinking more than one beer, or not

drinking in the drink-one condition.

Data Collection: Most American participants selected text solicitations (86%);
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Figure 5.12: Participants in the kombucha experiment reported an overall positive
experience expressing an interest to participant in another similar experiment (23/32).
Most found the instructions easy to follow (28/32) and the reminders sent at appropriate
times (25/32).

participants elsewhere received email solicitations due to varying regulations around

automated text messages (e.g., replying to an automated text message in Brazil or India is

infeasible since the source number is masked). 56% of participant responses came within

30 minutes of the solicitation; 21% of responses took more than 90 mins. Participants

sparingly responded to follow-up questions. Experimenters used the remind participant

button 2 (kombucha) and 3 (Open Humans) times to remind participants with missing

data.

Clarifying questions: The experiment requested that all participants adhere to the

protocol as much as possible without harming their health. Participants could ask the

experimenter (via the platform) if confused. Participants’ clarifying questions focused

on measurements (e.g., measuring stool consistency once during the day or multiple

times) and specific lifestyle choices (e.g., consuming probiotics while drinking kom-

bucha?). Participants in kombucha experiment reported an overall positive experience

(Figure 5.12).
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5.6 Reflection

Our results point at three challenges in democratizing experimentation: 1) the

three experimenters had advanced degrees, 2) two of the three completed experiments

were underpowered, and 3) experiment participants demonstrated varying levels of

adherence.

5.6.1 Do successful citizen-led experiments require prior expertise?

While an advanced degree is not a prerequisite, having one confers an advantage.

This is unsurprising; contributions to open access web platforms are rarely uniform

across educational levels. MOOCs are disproportionately completed by learners from

more-affluent and better-educated neighborhoods [67], and 73% of citizen scientists and

Wikipedia contributors have advanced degrees [126, 167] .

Why were all three experiments run by people with advanced degrees? One

reason could be self-selection: those without prior expertise in experimentation might

have opted out of running an experiment. This is weakly supported by data: all 36 par-

ticipants in the kombucha experiment enjoyed the experiment and wanted to participate

in more experiments (Figure 14). However, only two participants wanted to design and

run follow-up experiments; both have an advanced degree. While simply asking people

to contribute might work for traditional citizen science projects, experimentation might

be a bigger leap. We suggest two improvements. First, reduce effort by providing ready

to run experiments; common health and lifestyle topics such as coffee consumption and

sleep might be good candidates. Running a sample experiment enables people to pilot

the platform before testing their ideas while also potentially making them comfortable

with the idea of experimentation itself. Second, support a growth mindset [46]: e.g. the

platform can emphasize that anyone can learn how to run an experiment.
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Another reason for experimentation by those with advanced degrees could be

their awareness of potential participants. All three experimenters had access to people

who were interested in similar topics; e.g., the Open Humans experimenter received

both participants and feedback for their idea from the group’s slack community. Such

affinity spaces are known to provide potential participants as well as social support [58].

To tackle this, the design workflow can nudge the creator to start their experiment design

by thinking of topics relevant to their social connections.

5.6.2 Guidance techniques to enable citizens to recruit others

Two of the three completed experiments were underpowered. Citizen experi-

menters learned what many scientists know: recruiting participants is time-consuming.

This suggests that a good experimental design is not enough and recruiting is the next

challenge for citizen scientists on their way to develop meaningful knowledge. While

the absence of shared knowledge with experts can sometimes give novices’ work a boost

(e.g. identifying green pea galaxies on Galaxy zoo), it’s less useful when the lack of

knowledge is a hindrance. Tools for training and collaboration can help by clearly con-

veying the importance of getting enough participants; enabling experimenters estimate

what ”enough” is; and providing sources and strategies to recruit participants.

Citizen experimenters aren’t as ardent about sufficient participation numbers

as professional scientists. One important piece of technical knowledge is performing

power analysis before running the experiment. Additionally, following the lead of data

journalists [65], conveying results through real-world effect sizes—such as additional

years you’ll live—might be useful. Moreover, the experimenter need not find all the par-

ticipants by themselves. Akin to a Clinical Research Coordinator, a separate recruitment

role can help the experimenter rope in others to help out. Participants signed up for an

experiment can also assist by suggesting others ala snowball sampling.
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How might we help increase participation? Common reasons why people join

expert-led experiments include [129]: to help find an answer to a question that personally

affects them, to gain access to potential treatments, and for credit or monetary compen-

sation. Moreover, the trust placed in institutional researchers might not extend to citizen

experimenters [33].

Adherence, however, remains a challenge. The opportunity to contribute to sci-

ence is exciting (e.g. kombucha experiment participants mentioned this as a motivation).

While altering one’s lifestyle for a day might not be very difficult for many people, doing

the same for a week (or more) might be tedious enough to entirely avoid participating,

drop out after signing up, or not adhere to the instructions.

Drawing on findings from social computing and crowd-funding [74, 79], we

suggest four remedies to improve both participation and adherence numbers: 1) increase

participant trust by sharing more information about the experiment’s goals, approximate

effort expected, and the experimenter’s biography; 2) implement activation thresholds

to make social reciprocity explicit for group activities and to reduce potentially wasted

efforts [26]; 3) leverage participation from communities with already strong ties and

common goals; 4) allow people to pre-register for topics of interest so they might join

relevant experiments created at a later date [12].

Our study did not provide experimenters or participants monetary compensation.

Consequently, people’s motivation is more intrinsic, which has benefits [127] (e.g. telling

people the importance of their work improves performance [23]), but also empirically

shows a high dropout rate. Compensation may help some citizen science experiments.

5.6.3 Design implications for knowledge work

We suggest three heuristics for systems that chunk complex knowledge work:

separate roles, provide interactive guidance, and facilitate iteration. These ideas extend
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minimalism to design learning experiences [159].

1. Identify roles. People, especially novices, often struggle to get started. Role-based

approaches confer three benefits: clean delineation of responsibilities improves

chances of task completion, clustering similar tasks reduces overhead and increases

consistency; and people can decide their contribution levels. Procedural support

operationalizes minimalism by co-locating tailored learning resources with specific

steps.

2. Provide procedural support for just-in-time domain-expertise. A diverse audience might

not interpret instructions consistently, or fail to translate textbook definitions to

practice. Our results show that people are good at interpreting procedural support

(like examples) for their use case. Creating such learning resources using the crowd

or even learners themselves could reduce the effort needed [86].

Checklists, cognitive aids, and tutoring systems exploit chunking as a means of

onboarding new participants in a community of practice. For checklists, these

chunks are usually static and expert-designed. A powerful benefit of interactivity

is the opportunity for personalization. To reduce the time spent designing scaffolds

and workflows, reuse lessons from other tools.

Our first two heuristics focus on the authoring piece. Our third heuristic focuses on

the reviewing piece. In contrast with cognitive aids and tutoring systems that ”bake

in” knowledge, our review step—like learnersourcing [86]—leverages the crowd

for customized feedback. Structured reviewing—like Galileo—simultaneously

discourages the lazy shortcut of superficial reviewing, and lowers the cognitive

burden of providing deep, actionable feedback.

3. Handle errors using iterations. Most first drafts have errors. Feedback can be pro-

vided by experts [45, 145], peers [17, 100], software [42], or even oneself [17, 145].
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Support iterations and pre-task training can counter concerns of superficial reviews.

Why? Scaffolded questions and checklists help people reflect on their work at

every step, especially when the system fails to automatically tackle inconsistencies

for open-ended work.

5.6.4 Do citizen experiments benefit or harm society?

One challenge of modern life is the increasing layers of social and technical

infrastructure that separate the creation of knowledge from its everyday use. This

divorce makes it difficult to wisely assess and use knowledge. This paper has outlined

the positive potential for citizen designed experiments, a greater range of perspectives,

participation, and understanding. It’s worth considering the risks. The primary concern

we have is that a poorly designed experiment with a faulty conclusion influences people

in fraught ways.

At its best, over time scientific experiments expand human knowledge and correct

mistakes when they occur. However, sometimes the popular press reports a headline-

grabbing result that is inaccurate, but not the subsequent correction and elaboration.

Particularly with science, when ideas are newsworthy but low-quality, people can

incorporate misguided ideas in a way that be difficult to dislodge. Perhaps the most

notorious example is the (debunked) claim that vaccines, especially MMR vaccine, cause

autism by disrupting the body’s microbial composition and/or introducing harmful

chemicals. At a time of rising autism diagnoses, this claim terrified parents and continues

to impede childhood vaccination more than two decades later . Furthermore, the 20th

century offers many examples of pervasively-adopted chemicals (such as lead in paint

and gasoline, and asbestos in buildings) that were later found to be toxic. Wakefield’s

publication linking MMR vaccine to autism (later retracted) was a serial case study [62],

not an experiment. While sharing case studies can help identify valuable leads for
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further study, the small size and biased selection create enormous risk of confounds and

spurious relationships. (In this case, unidentified correlated timing in the measures and

undisclosed financial ties by the author further clouded the picture.) Currently, most

readers cannot fully grasp the evidentiary difference between a small case study and

a rigorous controlled experiment. Our hope is that democratizing the doing of science

may help the public interpret science news and reduce the risk of leaping to conclusions.

Because not all experiments are appropriate for people to run, some gatekeeping

of citizen experiments might be necessary. 62 of 66 complete designs were posted online

on Galileo for others to view; the primary author took 4 down because the research team

identified them as risky. For example, one removed design sought to investigate the

effect of colloidal silver on cognitive performance. There is a community that believes

colloidal silver (tiny particles suspended in liquid) to have beneficial properties [41].

While the designer may be well-intentioned, consuming colloidal silver can cause irre-

versible damage such as skin discoloration, and the NIH has sued manufacturers for

misleading claims [130]. Galileo offers keyword triggers for alerting both the designer

and the research team of possibly dangerous experiments. For example, an experiment

containing ”cancer” or ”CBD” triggers an email to the research team; use of the word

”cancer” indicates potential health risks for participants (who might be cancer patients)

while ”CBD” indicates potential legal risks across many places around the world.

Sifting through ideas expressed by people for experimentation, we believe cit-

izen experiments seem well suited for ideas that meet three criteria; they must 1) be

scientifically tenable, 2) combine high excitement with low efforts, and 3) provide zero

to no risk. Scientifically tenable means that the experiment answers a gap in research

literature, minimizes placebo effects, and yields results in a week with a high likelihood.

To be low-effort, all the experimental steps (including reporting data) should be easy

to understand and perform. Finally, the experiment should not provide any cause of
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harm to participants and it should be legally and ethically permissible across countries

and cultures. As a crude beginning, this can be operationalized as the existence of

numerous anecdotes about potential upsides with none or well understood downsides.

For instance, bee venom reduces Lyme disease symptoms (an idea proposed on the plat-

form) is an idea with anecdotal benefits but the existence of venom implies non-trivial

possibility of self-harm.

This paper investigated citizen-led experimentation with novel procedural sup-

port. Three empirical investigations tested this approach. For us, the most striking result

is that online volunteers collaboratively performed scientific experimentation without

any expert help by drawing on their lived experience. Our work also illustrates the

challenge of helping novices successfully execute a complex knowledge task. Specifically,

finding and retaining participants and making the platform accessible to a broader audi-

ence emerged as key challenges. With systems that enable citizen-led experimentation,

people can potentially match scientists’ knowledge with their lived experiences to create

insights both for themselves and for the scientific community. More generally, we hope

that our work suggests ways to build systems that provide just-in-time domain exper-

tise for knowledge work. Such systems can enable novice-led work that is personally

meaningful, and situated in people’s lived experiences.

This chapter, in part, includes portions of material as it appears in the paper

Galileo: Citizen-led Experimentation using a Social Computing System by Vineet Pandey,

Tushar Koul, Chen Yang, Daniel McDonald, Mad Price Ball, Bastian Greshake Tzovaras,

Rob Knight, and Scott R. Klemmer in the proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI 2021). The dissertation author was the primary

investigator and author of this paper.

97



Chapter 6

Conclusion

This dissertation demonstrates that procedural guidance works well for scientific

experimentation. This chapter provides future steps.

6.1 Systems & Domains

Domain experts make creative contributions like writing articles, curating muse-

ums, leading teams, and more. As in science, the number of experts in many domains

is relatively small and their training relatively homogenous. Can procedural guidance

support other genre of work?

6.1.1 Systems for end to end scientific work

Experimentation provides one method to create knowledge across the natural

and behavioral sciences. Other ways to empirically evaluate hypotheses—case-control

or cohort studies—require different support [125]. Furthermore, designing and running

an experiment is one step among many in creating new knowledge. Scientists perform a

range of activities including analyzing study data and communicating the results (e.g.
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by writing a paper). One key challenge in such complex work is coming up with the

initial design(s) that can be refined.

Case study: writing

EteRNA participants used system-provided templates to write up their results

and share with others [107]. How might procedural systems assist? As is common

for complex work, experts possess knowledge of the success criteria, mental scaffolds

to help with writing, and access to other experts for feedback [81]. Showing specific

knowledge to novices in the context of the work might be useful. Scientific writing

follows different styles; let’s consider two contrasting examples: the methods section

and the discussion section of a paper.

The methods section provides specific details about how certain research was

conducted. It describes the study hypotheses, choices of measures, method of enquiry,

and all relevant decisions taken while running the study. Others should be able to

perform these steps and (hopefully) find the same result. By using templates as the

procedural guidance tool, a system can help people exploit the standard structure of

the methods section and avoid standard mistakes. The discussion section of a paper is

far less templated though since it summarizes multiple topics including the key ideas,

the methods, and the results. A procedural guidance system for writing the discussion

section can use multiple techniques; it can 1) identify the research question from a

previous section; 2) use rubrics to prompt the writer to reflect on their claims; 3) show

examples from other discussion sections; and 4) use checklists and peer feedback to

improve clarity. The key insight here would be to help people explore the set of questions

that a discussion section needs to answer. Such suggestions are preliminary. Rapid

iterations immensely benefitted this dissertation’s research.

99



6.1.2 Domains for citizen-led scientific investigations

This dissertation used microbiome research as a petri dish. Microbiome science is

nascent, personal, and motivating. Other health related domains—like nutrition and

Transcranial Direct Current Stimulation (tDCS)—are a good match. Transfering this

dissertation’s techniques to other domains raises design questions. First, different scien-

tific domains might accept different methods of creating knowledge; e.g. some might

rely strictly on Randomized Controlled Trials while others might prefer observational

studies owing to the difficulty of randomization. Second, research communities create

standard measures for popular outcomes of interest. Supporting standard measures

provides three benefits: 1) it reduces citizens’ efforts in coming up with a new measure,

2) it improves reliability and reproducibility, and 3) it helps people compare their results

with prior research. For example, tDCS’ effect on cognitive performance intrigues online

communities, using standard Cognitive Ability Tests to recod the effects might help [114].

The correct implementation of standard measures can be especially useful for domains

where self-reports are a primary way of collecting data; using confidence ratings and

multiple questions could support citizen experimenters in collecting useful data. Im-

plementing specific measures lends itself to interesting interface design challenges as

well: people should understand the ask and provide correct data, all with minimum

overhead.

6.1.3 Designing efficient procedural support

Computational problem-solving focuses on four key processes: abstraction, de-

composition, generalization, and pattern matching [170]. The dissertation presents

systems that use examples, checklists, and templates to embed procedural support. A

promising avenue for future work might be to use procedural support to help people
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with pattern matching for higher order tasks.

Useful procedural support for people needs to be simple, actionable, and po-

tentially domain-specific. Examples or checklists that are too long and not directly

linked to the task will see people struggle. Since people are better at identifying useful

features than generating them [151], two ideas emerge for designing similar systems.

First, start with “good enough” ideas, observe how people identify the useful features,

and iterate to develop guidance techniques that lead to a more consistent and correct

interpretation across people. Second, textual instructions provide one low-effort way

to embed procedural support; providing examples using expert-created videos can be

useful as well. Complex tasks such as laboratory work could benefit from short, specific

tutorials.

6.1.4 Sources for procedural support

The systems described in this dissertation leveraged insights from experimen-

tation in psychology [118] and design guidelines for social computing [138]. Wikihow

provides a corpus of instructions for a wide range of activities from gardening to writing

letters (wikihow.com). Online fora support crowd-generated resources that are dis-

tributed and unstructured: people share details of their goals, their attempts (including

instructions), and even their evaluation of different techniques. Curating procedural re-

sources from books and online resources can bootstrap online systems. Learnersourcing

has demonstrated that learners can generate content that can be useful for others [83]

while other systems have created new lexical categories from seed terms by mining fic-

tion text [53]. Curating online resources has other advantages too: identifying structure

in people’s posts, research articles, or books identifies specific features that can bootstrap

AI systems.

Experts know the rules and ways of domain-specific work [56]. How might we
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leverage experts’ knowlegde and experience to make their practices available more

widely? For this dissertation research, microbiome experts were wary of providing

feedback on citizens’ work due to two reasons: 1) the time and effort invested, and

2) the potential of nudging citizens into accidently harmful work. To leverage and

reuse their strategies, experts can lead by demonstration. Experts perform a task as

part of their regular workflow; an annotated recorded version of the workflow can

be programmatically reused by others [40]. Such a macro recording and annotation

approach can be more passive or proactive and the annotation can be performed by

demonstrators or annotators.

6.2 Patterns: Learning tools for end-users

Learning has always been lifelong. Rapid change and the ready availability

of online resources make it even more so. This dissertation seeks to place learning

experiences at the right time for people to use them. In the learning sciences, Bloom’s

taxonomy shows a hierarchy of ways of engaging knowledge, from remembering facts

to evaluating theories (Figure 1.2). Traditionally, this diagram invites a discussion of

classroom learning objectives. Such an order implies a potential research trajectory.

Procedural guidance systems can double up as learning tools to provide a petri-dish

to test important questions in learning science. Might such systems improve people’s

understanding of the domain and the task?

How well do goal-driven learning approaches translate online? Problem-based

learning suggests starting with a problem that provides the context for learning new

techniques [76]. Students construct a solution and—in many cases—the problems them-

selves. Discovery learning follows a similar model: starting with learners’ curiosities

and then providing the right mental tools to structure the discovery process. While sup-
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porting people in storytelling in online classrooms improves engagement [133], learner

motivation in online environments differs from traditonal classrooms [92]. Classrooms

use test scores as external benchmarks but online learners might be motivated by their

goals and care less about scores. Assessing competence at a task (or related tasks) can be

one way to assess learner performance. This approach has the additional advantage of

providing learners more time on tasks similar to the ones they’re interested in.

The interaction between procedural guidance and social computing raises sev-

eral research questions. Leveraging similarities between Bloom’s taxonomy of learning

and the hierarchy of social computing roles provides a potentially rich area of enquiry.

Student interactions in online classrooms demonstrate similarity to role-taking on so-

cial networking platforms [90]. Legitimate peripheral participation [20] proposes that

onboarding people with simple, low-risk tasks improves their participation and contri-

butions. Organizing tasks in increasing order of learning complexity and supporting

them with procedural guidance can potentially move students up the knowledge as well

as engagement hierarchies (Figure 1.2).

6.3 Methods: Building a Science of Social Computing Sys-

tems

This dissertation identifies questions of prototyping, co-design, and emergent

behavior as important issues and proposes a combination of theory, prototyping tools,

and benchmarks.
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6.3.1 Prototyping

How can we rapidly build, debug, and improve social computing systems? For

instance, evaluating social computing systems is time-consuming: such systems embed

multiple ideas; and usage phenomena are scale dependent and emergent.

All three systems presented in this dissertation have multiple features. Evaluat-

ing many features increases the designer’s workload and requires more participants.

Therefore, social computing systems benefit from more holistic evaluation feature testing.

One approach might be to categorically separate measures for system evaluation (e.g.

do people collaboratively create better questions using Docent?) from feature evaluation

(e.g. does Docent‘s edit feature help people improve another user’s question). A clear

separation might help system designers sort the evaluation components in order of

importance, assign different quality thresholds (e.g. controlled experiments vs obser-

vational evaluation), and communicate overall evaluation effectively to the research

community.

Finding enough participants has been one bottleneck in developing systems for

this dissertation. Every design-build-deploy cycle requires multiple iterations with

groups of people. Friends and labmates aren’t good proxy for real world users: so-

cial relations and prior knowledge of the research might bias participation. Paying

crowdworkers doesn’t work either because extrinsic motivation can skew results [23].

Furthermore, using non-representative population can increase threats to external valid-

ity of the study.

This dissertation research leveraged participation from American Gut and mul-

tiple communites. Asking community leaders to be early users provides multiple

advantages: 1) they represent the system’s intended users; 2) they have more experience

with the community’s working and goals; and 3) gatekeeping reduces chances of harm

for others. However, this increases the workload for community leaders willing to help

104



out; creating low-effort channels for feedback can help.

6.3.2 Emergent behavior

How do participants organize and succeed in community-driven systems? How

does such behavior evolve over time? Studies with small sample sizes can be poor

predictors of emergent behavior in new systems. Furthermore, results are not even-

keeled across users: some do more than others, many drop out, and take different

roles [20]. One approach would be to develop a more stratified understanding of the

results. Many health studies attempt to identify factors that influence people’s individual

responses. Social computing researchers can follow a similar model: rather than testing

the efficacy of ideas with population-level measures, they might ask ”Did this idea

work for some people but not for others? If so, why?”. Accumulating such insights

across multiple research efforts can complement principles derived from psychology

and organizational behavior.

6.3.3 Collaborating with domain experts

This dissertation features contributions from multiple communities—such as

kombucha enthusiasts, Open Humans. The research papers feature 27 co-authors from

five fields including microbiology, cognitive science, learning psychology, and systems.

Many diverse efforts, including Precision Medicine Initiative (allofus.nih.gov), Zooni-

verse (zooniverse.org), and Foldscope Microcosmos (foldscope.com), might benefit from

using this dissertation’s principles to diversify and deepen citizen contributions. How-

ever, building such a network requires effort that feel tangential to research. How

do experts across multiple domains contribute towards building systems that support

domain-specific enquiry?
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Working with multiple domain experts brings great value and learning opportuni-

ties but also multiple challenges. Developing a shared vocabulary helps. One approach

is to use prototypes to ground the conversation across different domain experts. Con-

crete prototypes invite specific feedback from domain-experts that helps the system

designer understand higher-level principles. Regular meetings can help catch early

errors and also add to the trust [142]. For example, an early prototype with chat ideas

floundered at the prototyping stage itself; experts mentioned that the effort of looking

through people’s chats for insights made this idea a non-starter. Templating support for

automatically creating multiple prototypes for specific atomic tasks (asking questions,

adding responses) can improve the rate of iteration.

6.3.4 Supporting global participation

This dissertation aims to complement global data collection with global distribu-

tion of expertise. Most Gut Instinct participants are from rich educated countries: 80%

of Docent questions were from people in the developed world and all 3 experimenters

had advanced degrees. People not represented on the platform across the world might

have different ideas. How might such systems support a more diverse participation?

Efforts to scale and diversify participation can build on ideas that are common

across cultures. For example, disease awareness months might provide a common

timeframe for a global audience to collaborate on relevant issues. The ice bucket chal-

lenge raised awareness and donations for Amyotrophic Lateral Sclerosis (www.alsa.org).

Understanding and building on differences in cultural norms is important too. Stud-

ies about human psychology have been traditionally run with a limited demography:

overwhelmingly Western, educated, and residents of rich, industrialized, democratic

countries [72]. Recent research has explored different cultural norms across device use

and sensitive health topics. Lab in the Wild demonstrates that people across cultures
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evaluate webpage designs in starkly different ways [137]. TeachAIDS has improved

awareness of AIDS in India with a culturally-sensitive design that provided using locally

tailored videos [150]. Furthermore, complex socio-economic factors can shape participa-

tion as well. E.g. in traditonally hierarchical societies, novices might be concerned about

challenging experts. These examples suggest that successful, diverse participation might

start with identifying what works in different cultures and amplify these ideas online.

Finally, even when people might be motivated, they might lack the time/remuneration

to learn new things and implement them in their lives. Might payment help? To reduce

reliance on payments, one approach could be to pay people to start using the system

and then remove the payment as participation becomes more stable [138].

6.4 Implications and Limitations

The systems developed as a part of this dissertation support people in generating

hypotheses and running experiments. What are the implications of this research for social

computing? What broader technical and societal transformations might we foresee?

6.4.1 Collaboration between novices and experts

Experts provide feedback and lead crowd efforts [45]. How might people support

experts in complex knowledge work? Experts need help with multiple activities—such as

participant recruitment—where citizens might have complementary skills and contexts.

Citizens’ efforts can also help experts refine the design space. For example, many novel

ideas in health haven’t been studied before; therefore, the effect size of such interventions

is unknown and difficult to guess. Citizen-led experiments can help experts take better

informed guesses, hopefully improving the odds of finding significant results. Citizens

could also try reproducing current scientific research in fields with “reproducibility
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crisis” such as psychology. Such collaborative efforts raise novel questions. Might

working with novices help experts uncover their blind spots? How might such teams

of experts and novices work through disagreement? Furthermore, how might credit be

allocated in such settings?

6.4.2 Focus on processes over titles

Scientific research increasingly leverages larger teams with diverse expertise [172].

Since Gut Instinct users collaboratively designed and ran experiments, can they be called

scientists now? Oxford dictionary defines a scientist as “a person who conducts scientific

research or investigation; an expert in or student of science, esp. one or more of the

natural or physical sciences”. For all their useful contributions, this dissertation does not

consider Gut Instinct users—experiment designers, reviewers, participants, hypotheses

generators—to be scientists. One key reason is a lack of evaluation of users’ conceptual

skills; understanding how key concepts are linked is important for mastering complex

knowledge work. For example, absent system support, can people design an experiment

from scratch or recognize well-constructed experiments from poorer ones? Answering

such questions can also uncover the limitations of procedural guidance systems.

The scientist-or-not question is also tied to the process of doing science: did Gut

Instinct participants perform scientific work? This dissertation’s evaluation demon-

strates this to be true. However, there are many aspects to scientific work that does

not lend itself well to workflows. For example, science is a contact sport [103]: ideas

are gleamed from talks, discussed with others, and drawn from personal experiences.

Famously, watching someone throw a plate in the air inspired Richard Feynman to

pursue a question; answering this question won him the Nobel Prize in Physics in 1965.

Creating such serendipitious encounters for inspiration and feedback can be powerful.

Embedding social processes in online systems for complex work can help us draw ideas
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about designing such interactions.

This dissertation research provides a vision and prototype systems for complex

work by drawing on insights from interactive systems, social computing, and learning

theory for enabling people to perform personally meaningful work. By doing so, this

dissertation intends to democratize expertise and provide ways to meaningfully embed

computation in society.
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